This study presents quantitative structure-toxicity relationship (QSTR) models on the toxicity of 91 organic compounds to Chlorella vulgaris using multiple linear regression (MLR) and Kriging techniques. The molecular descriptors were calculated using SPARTAN and DRAGON programs, and descriptor selection was made by "all subset" method available in the QSARINS software. MLR and Kriging models developed with the same descriptors were compared. In addition to these models, Kriging method was used for descriptor selection, and model development. The selected descriptors showed the importance of hydrophobicity, molecular weight and atomic ionization state in describing the toxicity of a diverse set of chemicals to C. vulgaris. A QSTR model should be associated with appropriate measures of goodness-of-fit, robustness, and predictivity in order to be used for regulatory purpose. Therefore, while the internal performances (goodness-of-fit and robustness) of the models were determined by using a training set, the predictive abilities of the models were determined by using a test set. The results of the study showed that while MLR method is easier to apply, the Kriging method was more successful in predicting toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-014-3182-3 | DOI Listing |
Clin Epigenetics
January 2025
Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.
View Article and Find Full Text PDFBMC Public Health
January 2025
School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, No.13, Hangkong Road, Qiaokou District, Wuhan City, 430030, China.
Objective: Understanding healthcare-seeking propensity is crucial for optimizing healthcare utilization, especially for patients with chronic conditions like hypertension or diabetes, given their substantial burden on healthcare systems globally. This study aims to evaluate hypertensive or diabetic patients' healthcare-seeking propensity based on the severity of symptoms, categorizing symptoms as either major or minor. It also explores factors influencing healthcare-seeking propensity and examines whether healthcare-seeking propensity affects healthcare utilization and preventable hospitalizations.
View Article and Find Full Text PDFBMC Public Health
January 2025
School of Public Health, Southeast University, Nanjing. 87 Dingjiaqiao Road, Nanjing, China.
Background: Triglyceride-glucose (TyG) index was regarded as a cost-efficient and reliable clinical surrogate marker for insulin resistance (IR), which was significantly correlated with cardiovascular disease (CVD). However, the TyG index and incident CVD in non-diabetic hypertension patients remains uncertain. The aim of study was to explore the impact of TyG index level and variability on risk of CVD among non-diabetic hypertension patients.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Psychology, Faculty of Behavioural and Social Sciences, University of Groningen, Grote Kruisstraat 2/1, 9712TS, Groningen, The Netherlands.
Recruits are exposed to high levels of psychological and physical stress during the special forces selection period, resulting in dropout rates of up to 80%. To identify who likely drops out, we assessed a group of 249 recruits, every week of the selection program, on their self-efficacy, motivation, experienced psychological and physical stress, and recovery. Using linear regression as well as state-of-the-art machine learning techniques, we aimed to build a model that could meaningfully predict dropout while remaining interpretable.
View Article and Find Full Text PDFPublic Health
January 2025
Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Institute for Research Administration, Niigata University, Niigata, Japan. Electronic address:
Objectives: Mumps (infectious parotitis) is an acute respiratory illness caused by the mumps virus in humans. While numerous studies have explored the impact of climate variability on mumps incidence in specific cities or regions, few have analyzed nationwide associations across multiple locations. This study aims to systematically assess the short-term effects of meteorological factors on mumps incidence across Japan over a 15-year period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!