A needle penetrating the stomach cavity after acupuncture.

Clin Endosc

Asan Digestive Disease Research Institute, Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

Published: May 2014

Although acupuncture is known as a safe procedure that is widely used in many countries, complications including infection, hemorrhage, hematoma, pneumothorax, nerve damage, and cardiac tamponade have been reported. A needle penetrating the stomach after acupuncture, however, is very rare. Here, we report the case of 47-year-old woman who experienced abdominal pain 2 days after receiving acupuncture. Upper gastrointestinal endoscopy identified an approximately 2.5-cm long needle in the posterior wall of the antrum. The needle was removed endoscopically using rat tooth forceps with no complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058545PMC
http://dx.doi.org/10.5946/ce.2014.47.3.258DOI Listing

Publication Analysis

Top Keywords

needle penetrating
8
penetrating stomach
8
needle
4
stomach cavity
4
acupuncture
4
cavity acupuncture
4
acupuncture acupuncture
4
acupuncture safe
4
safe procedure
4
procedure countries
4

Similar Publications

Optogenetics has transformed the study of neural circuit function, but limitations in its application to species with large brains, such as non-human primates (NHPs), remain. A major challenge in NHP optogenetics is delivering light to sufficiently large volumes of deep neural tissue with high spatiotemporal precision, without simultaneously affecting superficial tissue. To overcome these limitations, we recently developed and tested in NHP cortex, the Utah Optrode Array (UOA).

View Article and Find Full Text PDF

What Is the Optimal Geometry of Dissolving Microneedle Arrays? A Literature Review.

Pharmaceutics

January 2025

Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.

The application of dissolving microneedle arrays (DMNAs) is an emerging trend in drug and vaccine delivery as an alternative for hypodermic needles or other less convenient drug administration methods. The major benefits include, amongst others, that no trained healthcare personnel is required and that the recipient experiences hardly any pain during administration. However, for a successful drug or vaccine delivery from the DMNA, the microneedles should be inserted intact into the skin.

View Article and Find Full Text PDF

Microneedle(MN)-based drug delivery is one of the potential approaches to overcome the limitations of oral and hypodermic needle delivery. An in silico model has been developed for hollow microneedle (HMN)-based drug delivery in the skin and its subsequent absorption in the blood and tissue compartments in the presence of interstitial flow. The drug's reversible specific saturable binding to its receptors and the kinetics of reversible absorption across the blood and tissue compartments have been taken into account.

View Article and Find Full Text PDF

Dissimilar Gas Tungsten Arc Welding of (FeCoNi)Al High-Entropy Alloy and Q235 Structural Steel.

Materials (Basel)

January 2025

Key Laboratory of Automobile Materials, School of Materials Science and Engineering, Jilin University, Changchun 130025, China.

(FeCoNi)A high-entropy alloy (HEA) is a new material with a strength similar to that of commercial Q235 structural steel, and its elongation is nearly three times greater than that of Q235 steel. Studying the welding process of the (FeCoNi)Al HEA and Q235 steel is expected to further expand the application range of commercial Q235 structural steel and provide a foundation for the engineering application of the (FeCoNi)Al HEA. This study focuses on the dissimilar welded components of (FeCoNi)Al HEA and Q235 steel and analyzes the forming quality, microstructure, and mechanical properties of dissimilar welded samples under different currents.

View Article and Find Full Text PDF

This research focuses on developing and characterizing islatravir-loaded dissolving microarray patches (MAPs) to provide an effective, minimally invasive treatment option for human immunodeficiency virus (HIV-1) prevention and treatment. The research involves manufacturing these MAPs using a double-casting approach, and conducting in vitro and in vivo evaluations. Results show that the MAPs have excellent needle fidelity, structural integrity, and mechanical strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!