Purpose: Vertical root fracture (VRF) is a common complication in endodontically treated teeth. Considering the poor prognosis of VRF, a reliable and valid detection method is necessary. Cone beam computed tomography (CBCT) has been reported to be a reliable tool for the detection of VRF; however, the presence of metallic intracanal posts can decrease the diagnostic values of CBCT systems. This study evaluated and compared the effects of intracanal stainless steel or titanium posts on the sensitivity, specificity, and accuracy of VRF detection using a NewTom VG CBCT system.

Materials And Methods: Eighty extracted single-rooted teeth were selected and sectioned at the cemento-enamel junction. The roots were divided into two groups of 40. Root fracture was induced in the test group by using an Instron machine, while the control group was kept intact. Roots were randomly embedded in acrylic blocks and radiographed with the NewTom VG, both with titanium and stainless steel posts and also without posts. Sensitivity, specificity, and accuracy values were calculated as compared to the gold standard.

Results: The sensitivity, specificity, and accuracy of VRF diagnosis were significantly lower in teeth with stainless steel and titanium posts than in those without posts. Interobserver agreement was the highest in teeth without posts, followed by stainless steel posts, and then titanium posts.

Conclusion: Intracanal posts significantly decreased the VRF diagnostic values of CBCT. The stainless steel posts decreased the diagnostic values more than the titanium posts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061304PMC
http://dx.doi.org/10.5624/isd.2014.44.2.89DOI Listing

Publication Analysis

Top Keywords

stainless steel
24
steel posts
16
posts
12
diagnostic values
12
titanium posts
12
sensitivity specificity
12
specificity accuracy
12
titanium stainless
8
vertical root
8
cone beam
8

Similar Publications

Micro-Defects-Related Low Cycle Fatigue Mechanical Model of the Nuclear-Grade S30408 Stainless Steel.

Nanomaterials (Basel)

January 2025

Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, China.

Continuous and interrupted low cycle fatigue tests were conducted on nuclear-grade S30408 stainless steel under different stress conditions at room temperature. Vickers hardness testing and microstructure characterization were performed on the fatigue samples with different fatigue states. The evolutionary mechanism of the microstructure defects in materials under fatigue cyclic loading was discussed.

View Article and Find Full Text PDF

Composite coatings reinforced with varying mass fractions of SiC particles were successfully fabricated on 316 stainless steel substrates via laser cladding. The phase compositions, elemental distribution, microstructural characteristics, hardness, wear resistance and corrosion resistance of the composite coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Vickers hardness testing, friction-wear testing and electrochemical methods. The coatings have no obvious pores, cracks or other defects.

View Article and Find Full Text PDF

Proper alignment of the teeth not only aids in functional occlusion but also promotes harmonious gingival contours, potentially reducing the risk of inflammation and gingival recession. This case series aimed to evaluate the effectiveness of optimizing axial inclination through clear aligner orthodontic treatment in addressing gingival recession defects. This case series included nine patients, aged 20-36 years, who presented with varying degrees of gingival recession on 12 mandibular incisors.

View Article and Find Full Text PDF

Objective: The endoscopic transsphenoidal approach is commonly used for sellar and suprasellar pathologies. However, reaching above the diaphragma sella, especially for posterosuperior and retrocavernous orientation, still poses some challenges. We designed and developed a steerable tip suction cannula (STSC) that has distinct leverage for endoscopic resection of such pathologies.

View Article and Find Full Text PDF

Sequential catalysis enables efficient pyrolysis of food waste for syngas production.

Bioresour Technol

January 2025

Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077 Hong Kong. Electronic address:

Thermochemical conversion technologies are emerging as one of the most promising approaches to tackle food waste crisis. However, the existing techniques confront significant challenges in terms of syngas selectivity and catalyst stability. This study introduced a cost-effective Joule heating approach utilizing sequential catalysts composed of treated stainless steel (SS) and biochar to optimize syngas production from food waste.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!