Splice-switching oligonucleotides (SSOs) have been widely used to inhibit exon usage but antisense strategies that promote removal of entire introns to increase splicing-mediated gene expression have not been developed. Here we show reduction of INS intron 1 retention by SSOs that bind transcripts derived from a human haplotype expressing low levels of proinsulin. This haplotype is tagged by a polypyrimidine tract variant rs689 that decreases the efficiency of intron 1 splicing and increases the relative abundance of mRNAs with extended 5' untranslated region (5' UTR), which curtails translation. Co-expression of haplotype-specific reporter constructs with SSOs bound to splicing regulatory motifs and decoy splice sites in primary transcripts revealed a motif that significantly reduced intron 1-containing mRNAs. Using an antisense microwalk at a single nucleotide resolution, the optimal target was mapped to a splicing silencer containing two pseudoacceptor sites sandwiched between predicted RNA guanine (G) quadruplex structures. Circular dichroism spectroscopy and nuclear magnetic resonance of synthetic G-rich oligoribonucleotide tracts derived from this region showed formation of a stable parallel 2-quartet G-quadruplex on the 3' side of the antisense retention target and an equilibrium between quadruplexes and stable hairpin-loop structures bound by optimal SSOs. This region interacts with heterogeneous nuclear ribonucleoproteins F and H that may interfere with conformational transitions involving the antisense target. The SSO-assisted promotion of weak intron removal from the 5' UTR through competing noncanonical and canonical RNA structures may facilitate development of novel strategies to enhance gene expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081105 | PMC |
http://dx.doi.org/10.1093/nar/gku507 | DOI Listing |
The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is an intronic GC repeat expansion in C9orf72. The repeats undergo bidirectional transcription to produce sense and antisense repeat RNA species, which are translated into dipeptide repeat proteins (DPRs). As toxicity has been associated with both sense and antisense repeat-derived RNA and DPRs, targeting both strands may provide the most effective therapeutic strategy.
View Article and Find Full Text PDFZhonghua Yi Xue Yi Chuan Xue Za Zhi
January 2025
University of Hong Kong Shenzhen Hospital, Shenzhen, Guangdong 518053, China.
Antisense oligonucleotide (ASO) was discovered several decades ago and initially used only as a research tool in the laboratory. In recent years, several ASO therapeutics have been developed for neurological disorders. Some of these therapeutics, including eteplirsen, golodirsen, viltolarsen, nusinersen and inotersen, have been approved by the Food and Drug Administration (FDA) and begun to draw the public's attention as an effective therapeutic approach.
View Article and Find Full Text PDFRedox Biol
January 2025
Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China. Electronic address:
Inflammatory mediators tumor necrosis factor (TNF) and interleukin 1 beta (IL1β), primarily derived from hepatic macrophages in the liver, play a crucial role in the progression of nonalcoholic steatohepatitis (NASH). Meanwhile, intravenously injected exosomes are mainly distributed in the liver and predominantly taken up by hepatic macrophage. Herein, we aimed to evaluate the feasibility of targeted inhibition of TNF and IL1β expression in hepatic macrophages via exosomes as a potential therapeutic strategy for NASH.
View Article and Find Full Text PDFLife Sci Alliance
March 2025
https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
The discovery of long non-coding RNAs (lncRNAs) has provided a new perspective on the centrality of RNA in gene regulation and genome organization. Here, we screened for lncRNAs with putative functions in the host response to single-stranded RNA respiratory viruses. We identify as a conserved cis-acting lncRNA up-regulated in three respiratory diseases to control the expression of its antisense gene , a key transcriptional regulator of the antiviral response.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
Long non-coding RNA (lncRNA) is a type of non-coding RNA distinguished by a length exceeding 200 nucleotides. Recent studies indicated that lncRNAs participate in various biological processes, such as chromatin remodeling, transcriptional and post-transcriptional regulation, and the modulation of cell proliferation, death, and differentiation, hence influencing gene expression and cellular function. ADAMTS9-AS1, an antisense long non-coding RNA situated on human chromosome 3p14.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!