Background: Absorbable collagen sponge (ACS) loaded with bone morphogenetic protein-2 (BMP-2) is approved for selected clinical applications; however, burst release limits its widespread use. Therefore, nanofiber (NF)-based scaffold with ACS backbone was developed to sustain release of loaded BMP-2 to improve the outcomes of bone grafting in a rodent model of cleft palate.

Methods: BMP-2 was loaded on ACS scaffold and then NF hydrogel with different densities (1-2%) was added to sustain the BMP-2 release. The release profiles of BMP-2 from constructs with different NF densities were evaluated in vitro to explore the optimum NF density that could recapitulate physiological bone healing process. Subsequently, scaffold with the appropriate NF density was implanted into a rodent model of cleft palate. Wistar rats, with surgically induced maxillary cleft defects, were then assigned to one of the following groups (n=6/group): no scaffold (control), ACS, ACS+BMP-2, NF+ACS, and NF+ACS+BMP-2. Micro-computed tomography (μCT) was utilized to evaluate percent bone filling (%BF) at defect site as well as changes in anteroposterior and transverse dimensions of the maxilla at weeks 0, 4, and 8. Histological assessment of bone healing was performed at week 8.

Results: In vitro release experiments showed that scaffolds containing 2% NF exhibited a release profile conducive to the natural stages of bone healing and, hence, it was utilized for subsequent in vivo studies. Bone healing occurred at the defect margins leaving a central bone void in the control, ACS, and NF+ACS groups over the 8-week study period. BMP-2-treated groups demonstrated higher %BF as compared with other groups at week 8 (p<0.05). Whereas the NF+ACS+BMP-2 group showed bone bridging of the defect as early as 4 weeks, which was not evident in ACS+BMP-2 group. In all groups, bone grafts did not disrupt anteroposterior and transverse growth of maxilla. Based on histological evaluations together with μCT data, NF+ACS+BMP-2 treatment resulted in clinically significant and consistent bone healing throughout the implanted scaffold when compared with the ACS+BMP-2 group.

Conclusion: NF+ACS+BMP-2 constructs exhibited osteoinductive properties together with preparation simplicity, which makes it a novel approach for BMP-2 delivery for cleft palate reconstruction.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.tea.2014.0075DOI Listing

Publication Analysis

Top Keywords

bone healing
16
bone
9
cleft palate
8
bone morphogenetic
8
rodent model
8
model cleft
8
control acs
8
release
6
scaffold
5
acs
5

Similar Publications

Purpose: Tibial open shaft fractures are very common and susceptible to infection, which can lead to significant morbidity especially infection and non-union. Antibiotic coated nail is one option for fixing open shaft tibial fractures to minimise infection. This study aimed to compare the clinical outcome of Gentamicin-coated tibial nails versus regular unreamed interlocking tibial nails in the treatment of type I and II tibial open fractures.

View Article and Find Full Text PDF

Frame configuration for the management of complex tibial fractures is highly variable and is dependent upon both fracture pattern and surgeon preference. The optimal number of rings to use when designing a frame remains uncertain. Traditionally larger, multi-ring-per-segment constructs have been assumed to offer optimal stability and therefore favourable conditions for fracture healing but there is little in-vivo evidence for this and the recent concept of reverse dynamisation challenges this approach.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the clinical and radiologic findings in the treatment of live oligotrophic and pseudoarthrosis nonunions in cats using a linear external fixator.

Methods: The study included 10 cats of various breeds, ages, and sexes that had previously undergone osteosynthesis at another clinic but did not achieve successful results. These cats were diagnosed with nonunion based on clinical and radiographic examinations conducted at the Clinic of the Surgery Department, Siirt University Animal Health Practice and Research Hospital between 2022 and 2023.

View Article and Find Full Text PDF

Delayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.

View Article and Find Full Text PDF

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!