A unique gene cluster for the utilization of the mucosal and human milk-associated glycans galacto-N-biose and lacto-N-biose in Lactobacillus casei.

Mol Microbiol

Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Valencia, Spain; Instituto de Investigaciones Biotecnológicas 'Dr. Rodolfo A. Ugalde', Universidad Nacional de San Martín, Buenos Aires, Argentina.

Published: August 2014

The probiotic Lactobacillus casei catabolizes galacto-N-biose (GNB) and lacto-N-biose (LNB) by using a transport system and metabolic routes different from those of Bifidobacterium. L. casei contains a gene cluster, gnbREFGBCDA, involved in the metabolism of GNB, LNB and also N-acetylgalactosamine. Inactivation of gnbC (EIIC) or ptsI (Enzyme I) of the phosphoenolpyruvate : sugar phosphotransferase system (PTS) prevented the growth on those three carbohydrates, indicating that they are transported and phosphorylated by the same PTS(Gnb) . Enzyme activities and growth analysis with knockout mutants showed that GnbG (phospho-β-galactosidase) hydrolyses both disaccharides. However, GnbF (N-acetylgalactosamine-6P deacetylase) and GnbE (galactosamine-6P isomerase/deaminase) are involved in GNB but not in LNB fermentation. The utilization of LNB depends on nagA (N-acetylglucosamine-6P deacetylase), showing that the N-acetylhexosamine moieties of GNB and LNB follow different catabolic routes. A lacAB mutant (galactose-6P isomerase) was impaired in GNB and LNB utilization, indicating that their galactose moiety is channelled through the tagatose-6P pathway. Transcriptional analysis showed that the gnb operon is regulated by substrate-specific induction mediated by the transcriptional repressor GnbR, which binds to a 26 bp DNA region containing inverted repeats exhibiting a 2T/2A conserved core. The data represent the first characterization of novel metabolic pathways for human milk oligosaccharides and glycoconjugate structures in Firmicutes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mmi.12678DOI Listing

Publication Analysis

Top Keywords

gnb lnb
16
gene cluster
8
lactobacillus casei
8
gnb
6
lnb
6
unique gene
4
cluster utilization
4
utilization mucosal
4
mucosal human
4
human milk-associated
4

Similar Publications

Bifidobacterium longum subsp. is a prevalent beneficial bacterium that colonizes the human neonatal gut and is uniquely adapted to efficiently use human milk oligosaccharides (HMOs) as a carbon and energy source. Multiple studies have focused on characterizing the elements of HMO utilization machinery in B.

View Article and Find Full Text PDF

Human milk and mucosa-associated disaccharides impact on cultured infant fecal microbiota.

Sci Rep

July 2020

Laboratorio de Bacterias Lácticas Y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Valencia, Spain.

Human milk oligosaccharides (HMOs) are a mixture of structurally diverse carbohydrates that contribute to shape a healthy gut microbiota composition. The great diversity of the HMOs structures does not allow the attribution of specific prebiotic characteristics to single milk oligosaccharides. We analyze here the utilization of four disaccharides, lacto-N-biose (LNB), galacto-N-biose (GNB), fucosyl-α1,3-GlcNAc (3FN) and fucosyl-α1,6-GlcNAc (6FN), that form part of HMOs and glycoprotein structures, by the infant fecal microbiota.

View Article and Find Full Text PDF

Large scale production of lacto--biose I, a building block of type I human milk oligosaccharides, using sugar phosphorylases.

Biosci Biotechnol Biochem

January 2020

Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan.

Human milk oligosaccharides (HMOs) have drawn attention for their contribution to the explosive bifidobacterial growth in the intestines of neonates. We found that bifidobacteria can efficiently metabolize lacto--biose I (LNB), the major building blocks of HMOs, and we have developed a method to synthesize LNB by applying this system. We produced LNB on a kilogram scale by the method.

View Article and Find Full Text PDF

Human milk and mucosal lacto- and galacto-N-biose synthesis by transgalactosylation and their prebiotic potential in Lactobacillus species.

Appl Microbiol Biotechnol

January 2017

Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Valencia, Spain.

Lacto-N-biose (LNB) and galacto-N-biose (GNB) are major building blocks of free oligosaccharides and glycan moieties of glyco-complexes present in human milk and gastrointestinal mucosa. We have previously characterized the phospho-β-galactosidase GnbG from Lactobacillus casei BL23 that is involved in the metabolism of LNB and GNB. GnbG has been used here in transglycosylation reactions, and it showed the production of LNB and GNB with N-acetylglucosamine and N-acetylgalactosamine as acceptors, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!