Ebola virus modulates transforming growth factor β signaling and cellular markers of mesenchyme-like transition in hepatocytes.

J Virol

Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA.

Published: September 2014

Unlabelled: Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease.

Importance: Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most lethal Ebola virus species, with case fatality rates of up to 90%. Although EBOV is considered a worldwide concern, many questions remain regarding EBOV molecular pathogenesis. As it is appreciated that many cellular processes are regulated through kinase-mediated phosphorylation events, we employed temporal kinome analysis to investigate the functional responses of human hepatocytes to EBOV infection. Administration of kinase inhibitors targeting signaling pathway intermediates identified in our kinome analysis inhibited viral replication in vitro and reduced EBOV pathogenesis in vivo. Further analysis of our data also demonstrated that EBOV infection modulated TGF-β-mediated signaling responses and promoted "mesenchyme-like" phenotypic changes. Taken together, these results demonstrated that EBOV infection specifically modulates TGF-β-mediated signaling responses in epithelial cells and may have broader implications in EBOV pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136307PMC
http://dx.doi.org/10.1128/JVI.01410-14DOI Listing

Publication Analysis

Top Keywords

ebov infection
28
ebola virus
20
kinome analysis
20
tgf-β-mediated signaling
16
signaling responses
16
tgf-β signaling
16
ebov
15
signaling
12
upregulation tgf-β
12
intermediates identified
12

Similar Publications

Ebola virus (EBOV) transcription is essentially regulated via dynamic dephosphorylation of its viral transcription activator VP30 by the host phosphatase PP2A. The nucleoprotein NP has emerged as a third key player in the regulation of this process by recruiting both the regulatory subunit B56 of PP2A and its substrate VP30 to initiate VP30 dephosphorylation and hence viral transcription. Both binding sites are located in close proximity to each other in NP's C-terminal disordered region.

View Article and Find Full Text PDF

Background: The robustness and persistence of vaccine antigen-induced antibodies are often used as proxy indicators of vaccine efficacy, but immune responses to vaccine vectors are typically less well-defined. Our study considered the kinetics of immunoglobulin (IgG) responses against the vector (vesicular stomatitis Indiana virus [VSIV]) nucleoprotein (N) and the inserted antigen (Ebola virus [EBOV]) glycoprotein (GP1,2) components of the rVSVΔG-ZEBOV-GP (rVSV-ZEBOV) vaccine and evaluated their use as biomarkers to confirm self-reported vaccination status.

Methods: From the Partnership for Research on Ebola Virus in Liberia (PREVAIL) I clinical trial (NCT02344407), we randomly selected 212 participants who received rVSV-ZEBOV (n=107) or placebo (n=105).

View Article and Find Full Text PDF

The Ebola filovirus (EBOV) poses a serious threat to global health and national security. Nanobodies, a type of single-domain antibody, have demonstrated promising therapeutic potential. We identified two anti-EBOV nanobodies, Nanosota-EB1 and Nanosota-EB2, which specifically target the EBOV glycoprotein (GP).

View Article and Find Full Text PDF

Ebola and Marburg (EBOV and MARV) filoviral infections lead to fatal hemorrhagic fevers and have caused over 30 outbreaks in the last 50 years. Currently, there are no FDA-approved small molecule therapeutics for effectively treating filoviral diseases. To address this unmet medical need, we have conducted a systematic structural optimization of an early lead compound, -(4-(4-methylpiperidin-1-yl)-3-(trifluoromethyl)phenyl)-4-(morpholinomethyl)benzamide (), borne from our previously reported hit-to-lead effort.

View Article and Find Full Text PDF

Background: The inflammatory macrophage response contributes to severe Ebola virus disease, with liver and lung injury in humans.

Objective: We sought to further define the activation status of hepatic and pulmonary macrophage populations in Ebola virus disease.

Methods: We compared liver and lung tissue from terminal Ebola virus (EBOV)-infected and uninfected control cynomolgus macaques challenged via the conjunctival route.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!