Genes encoding glycosyl hydrolase family 11 (GH11) xylanases and xylanases have been identified from Pseudobutyrivibrio xylanivorans. In contrast, little is known about the diversity and distribution of the GH10 xylanase in strains of P. xylanivorans. Xylanase and associated activities of P. xylanivorans have been characterized in detail in the type strain, Mz5. The aim of the present study was to identify GH10 xylanase genes in strains 2 and Mz5 of P. xylanivorans. In addition, we evaluated degradation and utilization of xylan by P. xylanivorans 2 isolated from rumen of Creole goats. After a 12-h culture, P. xylanivorans 2 was able to utilize up to 53% of the total pentose content present in birchwood xylan (BWX) and to utilize up to 62% of a ethanol-acetic acid-soluble fraction prepared from BWX. This is the first report describing the presence of GH10 xylanase-encoding genes in P. xylanivorans. Strain 2 and Mz5 contained xylanases which were related to GH10 xylanase of Butyrivibrio sp. Identifying xylanase-encoding genes and activity of these enzymes are a step toward understanding possible functional role of P. xylanivorans in the rumen ecosystem and contribute to providing an improved choice of enzymes for improving fiber digestion in ruminant animals, agricultural biomass utilization for biofuel production, and other industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12223-014-0329-z | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
f. sp. () secretes a plethora of cell wall-degrading enzymes (CWDEs) to facilitate fungal invasion during infection.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, SP, Brazil.
GH10 xylanases and GH62 Arabinofuranosidases play key roles in the breakdown of arabinoxylans and are important tools in various industrial and biotechnological processes, such as renewable biofuel production, the paper industry, and the production of short-chain xylooligosaccharides (XOS) from plant biomass. However, the use of these enzymes in industrial settings is often limited due to their relatively low thermostability and reduced catalytic efficiency. To overcome these limitations, strategies based on enzymatic chimera construction and the use of metal ions and other cofactors have been proposed to produce new recombinant enzymes with improved catalytic activity and thermostability.
View Article and Find Full Text PDFBMC Microbiol
November 2024
Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
Int J Biol Macromol
December 2024
School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. Electronic address:
The feruloyl oligosaccharides (FOs) produced by the decomposition of plant hemicellulose have broad potential applications in the food and biomedical areas. FOs were prepared through the specific enzymatic degradation of insoluble dietary fiber from different sources by cell-free GH10 and GH11 xylanases. The cell-free GH10 and GH11 xylanases were obtained by the heterologous expression in Escherichia coli.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China. Electronic address:
Lignin-carbohydrate esters (LC-esters) formed by glucuronoarabinoxylan and lignin are a key factor for the recalcitrance of corn bran, understanding LC-esters change during pretreatment and enzymatic hydrolysis by glucuronoyl esterases (GEs) is essential to the sustainable utilization of corn bran. Herein, hydrolysis performances of three GEs, SbGE15A, SbGE15B, and SbGE15C from Sordaria brevicollis with different subclades and modularity, and changes in enzyme-reachable LC-esters during different pretreatments of corn bran have been comprehensively compared. F enzymes, SbGE15B and SbGE15C showed higher catalytic activity towards model and natural substrates than F enzyme, SbGE15A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!