Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sugarcane bagasse modified by polyethylenimine (PEI) and glutaraldehyde (GA) was used as a carrier to immobilize Clostridium acetobutylicum XY16 in the process of butanol production. The effects of chemically modified sugarcane bagasse on batch and repeat-batch fermentations were investigated. Batch fermentation was conducted with an addition of 10 g/L modified sugarcane bagasse and 60 g/L glucose, resulting in a high solvent concentration of 21.67 g/L and productivity of 0.60 g/(L x h) with the treatment of 4 g/L PEI and 1 g/L GA. Compared to the fermentations by free cells and immobilized cells on unmodified sugarcane bagasse, the productivity increased 130.8% and 66.7%, respectively. The fibrous-bed bioreactor also maintained a stable butanol production during repeat-batch fermentations, achieving a maximum productivity of 0.83 g/(L x h) with a high yield of 0.42 g/g.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!