Large old trees are disproportionate providers of structural elements (e.g. hollows, coarse woody debris), which are crucial habitat resources for many species. The decline of large old trees in modified landscapes is of global conservation concern. Once large old trees are removed, they are difficult to replace in the short term due to typically prolonged time periods needed for trees to mature (i.e. centuries). Few studies have investigated the decline of large old trees in urban landscapes. Using a simulation model, we predicted the future availability of native hollow-bearing trees (a surrogate for large old trees) in an expanding city in southeastern Australia. In urban greenspace, we predicted that the number of hollow-bearing trees is likely to decline by 87% over 300 years under existing management practices. Under a worst case scenario, hollow-bearing trees may be completely lost within 115 years. Conversely, we predicted that the number of hollow-bearing trees will likely remain stable in semi-natural nature reserves. Sensitivity analysis revealed that the number of hollow-bearing trees perpetuated in urban greenspace over the long term is most sensitive to the: (1) maximum standing life of trees; (2) number of regenerating seedlings ha(-1); and (3) rate of hollow formation. We tested the efficacy of alternative urban management strategies and found that the only way to arrest the decline of large old trees requires a collective management strategy that ensures: (1) trees remain standing for at least 40% longer than currently tolerated lifespans; (2) the number of seedlings established is increased by at least 60%; and (3) the formation of habitat structures provided by large old trees is accelerated by at least 30% (e.g. artificial structures) to compensate for short term deficits in habitat resources. Immediate implementation of these recommendations is needed to avert long term risk to urban biodiversity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062419 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099403 | PLOS |
Ann Bot
January 2025
Theoretical and Experimental Ecology Station, CNRS, Moulis, France.
Background And Aims: It is assumed that trees should adapt their above and belowground organs as they age. However, most studies to date have quantified these trait adjustments in homogeneous forest stands, confounding the effect of stand aging on soil properties and the intrinsic response of trees to aging.
Methods: Here, we examined 11 morphological, architectural, anatomical and mycorrhizal fine root traits of each of the first five orders for 66 Pinus koraiensis individuals of 16 to 285 years old in northeast China, while accounting for soil characteristics (pH and total C, N and P concentrations).
Phytochem Anal
January 2025
Institute of Biology, Federal Research Centre Komi Science Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia.
Introduction: Vitex L. is a large genus of tropical and subtropical trees used in medicine of many nations. Some species are used in gynecology due to flavonoids, iridoids, and diterpenes.
View Article and Find Full Text PDFEcology
January 2025
Department of Biology, University of Louisville, Louisville, Kentucky, USA.
Lightning strikes are a common source of disturbance in tropical forests, and a typical strike generates large quantities of dead wood. Lightning-damaged trees are a consistent resource for tropical saproxylic (i.e.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Forest Engineering, Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, P.O. Box 257, Maputo, Mozambique.
Seasonally dry tropical woodlands are vital for climate change mitigation, yet their full potential in carbon storage remains poorly understood. This is largely due to the lack of species-specific allometric models tailored to these ecosystems. To address this knowledge gap, this study aimed to develop species-specific biomass allometric equations (BAEs) for accurately estimating both above- and below-ground biomass of Colophospermum mopane (J.
View Article and Find Full Text PDFEvolutionary sparse learning (ESL) uses a supervised machine learning approach, Least Absolute Shrinkage and Selection Operator (LASSO), to build models explaining the relationship between a hypothesis and the variation across genomic features (e.g., sites) in sequence alignments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!