Electrical detection of nucleic acid amplification through pH changes associated with nucleotide addition enables miniaturization, greater portability of testing apparatus, and reduced costs. However, current ion-sensitive field effect transistor methods for sensing nucleic acid amplification rely on establishing the fluid gate potential with a bulky, difficult to microfabricate reference electrode that limits the potential for massively parallel reaction detection. Here we demonstrate a novel method of utilizing a microfabricated solid-state quasi-reference electrode (QRE) paired with a pH-insensitive reference field effect transistor (REFET) for detection of real-time pH changes. The end result is a 0.18 μm, silicon-on-insulator, foundry-fabricated sensor that utilizes a platinum QRE to establish a pH-sensitive fluid gate potential and a PVC membrane REFET to enable pH detection of loop mediated isothermal amplification (LAMP). This technique is highly amendable to commercial scale-up, reduces the packaging and fabrication requirements for ISFET pH detection, and enables massively parallel droplet interrogation for applications, such as monitoring reaction progression in digital PCR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215847PMC
http://dx.doi.org/10.1021/ac500897tDOI Listing

Publication Analysis

Top Keywords

nucleic acid
12
acid amplification
12
electrical detection
8
detection nucleic
8
quasi-reference electrode
8
field transistor
8
fluid gate
8
gate potential
8
massively parallel
8
detection
5

Similar Publications

Objectives: Sepsis is a life-threatening medical emergency, with a profound healthcare burden globally. Its pathophysiology is complex, heterogeneous and temporally dynamic, making diagnosis challenging. Medical management is predicated on early diagnosis and timely intervention.

View Article and Find Full Text PDF

From fatty liver to fibrosis: the impact of miRNAs on NAFLD and NASH.

Funct Integr Genomics

January 2025

Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.

Non-alcoholic fatty liver disease (NAFLD) is a disease with various levels varying from fatty liver steatosis to acute steatosis which is non-alcoholic steatohepatitis (NASH), which can develop into hepatic failure, as well as in some conditions it can develop into hepatocellular carcinoma (HCC). In the NAFLD and NASH context, aberrant microRNA (miRNA) expression has a thorough contribution to the incidence and development of these liver disorders by influencing key biological actions, involving lipid metabolism, inflammation, and fibrosis. Dysregulated miRNAs can disrupt the balance between lipid accumulation and clearance, exacerbate inflammatory responses, and promote fibrogenesis, thus advancing the severeness of the disorder from simple steatosis to more complex NASH.

View Article and Find Full Text PDF

Molecular detection of Wolbachia sp. and Cytoplasmic incompatibility factors (CifA/B) in wild caught mosquitoes in Côte d'Ivoire.

Mol Biol Rep

January 2025

Equipe Biologie Moléculaire et Biotechnologies, Laboratoire de Recherche, Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso.

Background: Wolbachia is an endosymbiont bacterium known to stimulate host immunity against arboviruses and protozoa. Côte d'Ivoire is in a malaria-endemic region, and has experienced several dengue epidemics in recent decades as well. In order to help reduce the transmission of pathogens by mosquito vectors, we studied the prevalence of Wolbachia and the distribution of Cytoplasmic incompatibility factors (Cif) genes in different mosquito species caught in the wild in Cote d'Ivoire.

View Article and Find Full Text PDF

Ternary heterojunction BiS/MoS/BiMoO was designed as a signal probe to develop a dual signal amplification strategy empowered electrochemical biosensor for sensitive miRNA-21 detection by combining with catalytic hairpin assembly (CHA). The combination of the BiS/MoS/BiMoO heterojunction as a tracer indication probe and the CHA amplification strategy not only took fully use of the highly dense nanowire interwoven structure and superior active region of the probe, but also endowed the ability to improve the molecular hybridization efficiency by collision, which significantly avoided the cumbersome chain design and greatly simplified the step-by-step construction of the electrode surface. Hairpin H1 was first added dropwise to the gold nanoparticle-decorated electrode surface, and then opened by the introduced miRNA-21 to initiate the specific hybridization.

View Article and Find Full Text PDF

Biomarker microRNA-371a-3p - expression in malignancies other than germ-cell tumours.

J Cancer Res Clin Oncol

January 2025

Department of Urology, Asklepios Tumorzentrum Hamburg, AK Altona, Hamburg, Germany.

Purpose: microRNA-371a-3p (M371) is considered a highly sensitive and specific serum biomarker of testicular germ cell tumours (GCTs). However, little is known about the expression of M371 in nontesticular malignancies (NTMs), so far. As knowledge about the expression of the marker in other malignancies is a prerequisite for the clinical application of the test we aimed to explore the M371 expression in other cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!