Migrations of green turtles (Chelonia mydas) between nesting and foraging grounds across the Coral Sea.

PLoS One

Threatened Species Unit, Department of Environment and Heritage Protection, Queensland Government, Queensland, Brisbane, Australia.

Published: October 2015

Marine megafauna tend to migrate vast distances, often crossing national borders and pose a significant challenge to managers. This challenge is particularly acute in the Pacific, which contains numerous small island nations and thousands of kilometers of continental margins. The green sea turtle, Chelonia mydas, is one such megafauna that is endangered in Pacific waters due to the overexploitation of eggs and adults for human consumption. Data from long-term tagging programs in Queensland (Australia) and New Caledonia were analysed to investigate the migrations by C. mydas across the Coral Sea between their nesting site and their feeding grounds. A review of data collected over the last 50 years by different projects identified multiple migrations of C. mydas to and from New Caledonia (n = 97) and indicate that turtles foraging in New Caledonia nest in the Great Barrier Reef (Australia) and vice versa. Several explanations exist for turtles exhibiting this energetically costly movement pattern from breeding to distant foraging grounds (1200-2680 km away) despite viable foraging habitat being available in the local vicinity. These include hatchling drift, oceanic movements and food abundance predictability. Most of the tag recoveries in New Caledonia belonged to females from the south Great Barrier Reef genetic stock. Some females (n = 2) even showed fidelity to foraging sites located 1200 km away from the nesting site located in New Caledonia. This study also reveals previously unknown migrations pathways of turtles within the Coral Sea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062437PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100083PLOS

Publication Analysis

Top Keywords

coral sea
12
chelonia mydas
8
foraging grounds
8
migrations mydas
8
nesting site
8
great barrier
8
barrier reef
8
foraging
5
caledonia
5
migrations
4

Similar Publications

Trait-based approaches are revolutionizing our understanding of high-diversity ecosystems by providing insights into the principles underlying key ecological processes, such as community assembly, species distribution, resilience, and the relationship between biodiversity and ecosystem functioning. In 2016, the Coral Trait Database advanced coral reef science by centralizing trait information for stony corals (i.e.

View Article and Find Full Text PDF

The clownfish - sea anemone system is a great example of symbiotic mutualism where host «toxicity» does not impact its symbiont partner, although the underlying protection mechanism remains unclear. The regulation of nematocyst discharge in cnidarians involves N-acetylated sugars like sialic acid, that bind chemoreceptors on the tentacles of sea anemones, leading to the release of stings. It has been suggested that clownfish could be deprived of sialic acid on their skin surface, sparing them from being stung and facilitating mutualism with sea anemones.

View Article and Find Full Text PDF

Conspecific interactions between corals mediate the effect of submarine groundwater discharge on coral physiology.

Oecologia

January 2025

Department of Oceanography, Uehiro Center for the Advancement of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.

Land-based inputs, such as runoff, rivers, and submarine groundwater, can alter biologic processes on coral reefs. While the abiotic factors associated with land-based inputs have strong effects on corals, corals are also affected by biotic interactions, including other neighboring corals. The biologic responses of corals to changing environmental conditions and their neighbors are likely interactive; however, few studies address both biotic and abiotic interactions in concert.

View Article and Find Full Text PDF

Climate change is imposing multiple stressors on marine life, leading to a restructuring of ecological communities as species exhibit differential sensitivities to these stressors. With the ocean warming and wind patterns shifting, processes that drive thermal variations in coastal regions, such as marine heatwaves and upwelling events, can change in frequency, timing, duration, and severity. These changes in environmental parameters can physiologically impact organisms residing in these habitats.

View Article and Find Full Text PDF

Emerging and legacy organophosphate flame retardants in the tropical estuarine food web: Do they exhibit similar bioaccumulation patterns, trophic partitioning and dietary exposure?

Water Res X

May 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

Emerging organophosphate flame retardants (E-OPFRs) are a new class of pollutants that have attracted increasing attention, but their bioaccumulation patterns and trophodynamic behaviors in aquatic food webs still need to be validated by comparison with legacy OPFRs (L-OPFRs). In this study, we simultaneously investigated the bioaccumulation, trophic transfer, and dietary exposure of 8 E-OPFRs and 10 L-OPFRs in a tropical estuarine food web from Hainan Island, China. Notably, the ΣL-OPFRs concentration (16.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!