Lentiviral vectors have become mainstream gene transfer vehicles for their ability to deliver and integrate into host cells. In RNA interference (RNAi) applications, lentiviral constructs constitutively express double-stranded RNA molecules, usually as short hairpin RNA (shRNA), enabling long-term gene silencing, and, when pseudotyped with a broad host glycoprotein envelope, allow a multitude of cell types to be transduced. Their successful use ultimately relies on the production of lentiviral particles in high titer and uniformity. Typical methods require the transfection of three or more plasmids in which essential viral elements have been encoded separated so as to remain replication deficient. These transfection procedures are of critical importance; however, methods often vary among laboratories, making it difficult to assess the overall efficiency of lentiviral particle production. In this report, we focus exclusively on this step and compare the overall impact of the commercial transfection reagent FuGENE 6 with FuGENE HD. We found that FuGENE HD resulted in at least 5-fold improvement in viral particle titer as assessed by the p24 standard enzyme-linked immunosorbent assay. We present the complete optimized workflow and demonstrate this utility in which a single modification of this transfection step improved the lentiviral particle production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170048PMC
http://dx.doi.org/10.1177/1087057114539390DOI Listing

Publication Analysis

Top Keywords

lentiviral particle
12
particle production
12
rnai applications
8
applications lentiviral
8
fugene fugene
8
lentiviral
6
plasmid-based shrna
4
shrna lentiviral
4
particle
4
production
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!