We report the first stochastic dynamic causal modeling (sDCM) study of effective connectivity within the default mode network (DMN) in schizophrenia. Thirty-three patients (9 women, mean age = 25.0 years, SD = 5) with a first episode of psychosis and diagnosis of schizophrenia--according to the Diagnostic and Statistic Manual of Mental Disorders, 4th edition, revised criteria--were studied. Fifteen healthy control subjects (4 women, mean age = 24.6 years, SD = 4) were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI) interspersed with 2 periods of continuous picture viewing. The anterior frontal (AF), posterior cingulate (PC), and the left and right parietal nodes of the DMN were localized in an unbiased fashion using data from 16 independent healthy volunteers (using an identical fMRI protocol). We used sDCM to estimate directed connections between and within nodes of the DMN, which were subsequently compared with t tests at the between subject level. The excitatory effect of the PC node on the AF node and the inhibitory self-connection of the AF node were significantly weaker in patients (mean values = 0.013 and -0.048 Hz, SD = 0.09 and 0.05, respectively) relative to healthy subjects (mean values = 0.084 and -0.088 Hz, SD = 0.15 and 0.77, respectively; P < .05). In summary, sDCM revealed reduced effective connectivity to the AF node of the DMN--reflecting a reduced postsynaptic efficacy of prefrontal afferents--in patients with first-episode schizophrenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266292PMC
http://dx.doi.org/10.1093/schbul/sbu080DOI Listing

Publication Analysis

Top Keywords

default mode
8
first-episode schizophrenia
8
stochastic dynamic
8
dynamic causal
8
causal modeling
8
functional magnetic
8
magnetic resonance
8
resonance imaging
8
effective connectivity
8
women age
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!