Cancer stem cells (CSCs) may represent targets for carcinogenic initiation by chemical and environmental agents. Recent studies have raised a concern over the potential carcinogenicity of carbon nanotubes (CNTs), one of the most commonly used engineered nanomaterials with asbestos-like properties. Here, we show that chronic (6-month) exposure of human lung epithelial cells to single-walled (SW) CNTs at the workplace-relevant concentration induced an emergence of lung CSCs, as indicated by the induction of CSC tumor spheres and side population (SP). These CSCs, which were found to overexpress tumor promoter caveolin-1 (Cav-1), displayed aggressive cancer phenotypes of apoptosis resistance and enhanced cell invasion and migration compared with their non-CSC counterpart. Using gene manipulation strategies, we reveal for the first time that Cav-1 plays an essential role in CSC regulation and aggressiveness of SWCNT-transformed cells partly through p53 dysregulation, consistent with their suggested role by microarray and gene ontology analysis. Cav-1 not only promoted tumorigenesis in a xenograft mouse model but also metastasis of the transformed cells to neighboring tissues. Since CSCs are crucial to the initiation and early development of carcinogenesis, our findings on CSC induction by SWCNTs and Cav-1 could aid in the early detection and risk assessment of the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116501PMC
http://dx.doi.org/10.18632/oncotarget.1956DOI Listing

Publication Analysis

Top Keywords

caveolin-1 regulates
4
regulates lung
4
lung cancer
4
cancer stem-like
4
stem-like cell
4
cell induction
4
induction p53
4
p53 inactivation
4
inactivation carbon
4
carbon nanotube-driven
4

Similar Publications

Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.

View Article and Find Full Text PDF

Caveolin-1 mitigates the advancement of metabolic dysfunction-associated steatotic liver disease by reducing endoplasmic reticulum stress and pyroptosis through the restoration of cholesterol homeostasis.

Int J Biol Sci

January 2025

Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide, which has the potential to advance to fibrosis. CAV1 has the effects of improving liver lipid deposition in MASLD, however, the potential mechanism is largely unknown. Here, we establish a MASLD mouse model in CAV1 knockout (KO) mice and perform transcriptome analysis on livers from mice to investigate the effects of CAV1 in MASLD progression.

View Article and Find Full Text PDF

Ferroptosis plays a role in tumorigenesis by affecting lipid peroxidation and metabolic pathways; however, its prognostic or therapeutic relevance in pancreatic adenocarcinoma (PAAD) remains poorly understood. In this study, we developed a prognostic ferroptosis-related gene (FRG)-based risk model using cohorts of The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), proposing plausible therapeutics. Differentially expressed FRGs between tumors from TCGA-PAAD and normal pancreatic tissues from Genotype-Tissue Expression were analyzed to construct a prognostic risk model using univariate and multivariate Cox regression and LASSO analyses.

View Article and Find Full Text PDF

Exosome-derived miR-107 targeting caveolin-1 promotes gallstone progression by regulating the hepatobiliary cholesterol secretion pathway.

Biochem Pharmacol

December 2024

Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong Province, China. Electronic address:

Cholesterol gallstone is a disease with high incidence and quality of life. This study aimed to investigate the function of exosome-derived miRNA in gallstone formation and its related molecular mechanism. Exosomes were extracted and isolated from patients with gallbladder stones and age- and gender-matched healthy controls, and exosomal miRNA expression was compared between the two groups.

View Article and Find Full Text PDF

Cellular plasticity is a hallmark function of cancer, but many of the underlying mechanisms are not well understood. In this study, we identify Caveolin-1, a scaffolding protein that organizes plasma membrane domains, as a context-dependent regulator of survival signaling in Ewing sarcoma (EwS). Single cell analyses reveal a distinct subpopulation of EwS cells, which highly express the surface marker CD99 as well as Caveolin-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!