S100A14 is an EF-hand calcium-binding protein that has been reported to be involved in the progression of many malignancies. However, its role in ovarian cancer has not yet been clarified. In this study, we investigated the significance of S100A14 expression in epithelial ovarian cancers (EOCs) as well as it's mechanism of action. On both RNA and protein levels, S100A14 was overexpressed in transformed cells. Immunohistochemical staining demonstrated that S100A14 expression was associated with advanced stage (P<0.001) and poor tumor grade (P<0.001). Moreover, S100A14 overexpression was an independent prognostic factor for overall survival (HR = 4.53, P = 0.029). We also investigated S100A14's functional role by employing lentiviral-mediated overexpression and knockdown in EOC cells. S100A14 overexpression promoted cell proliferation, tumorigenesis, migration, and invasion, whereas S100A14 knockdown inhibited these properties. TOV112D cells that overexpressed S100A14 also exhibited greater tumor growth potential in xenografted mice. S100A14 promoted such a malignant phenotype in EOC cells through the PI3K/Akt pathway. Taken together, our data indicate that S100A14 has a crucial role in EOC progression, and its overexpression is associated with poor prognosis. Further study of S100A14's molecular mechanisms may lead to the development of a novel therapeutic target for ovarian cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116497 | PMC |
http://dx.doi.org/10.18632/oncotarget.1947 | DOI Listing |
Cells
January 2025
The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada.
Epithelial ovarian cancer (EOC) exhibits a unique mode of metastasis, involving spheroid formation in the peritoneum. Our research on EOC spheroid cell biology has provided valuable insights into the signaling plasticity associated with metastasis. We speculate that EOC cells modify their biology between tumour and spheroid states during cancer dormancy, although the specific mechanisms underlying this transition remain unknown.
View Article and Find Full Text PDFCells
January 2025
Infectious Diseases & Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India.
Mebendazole (MBZ), a benzimidazole anthelmintic and cytoskeleton-disrupting compound, exhibits antitumor properties; however, its action on ovarian cancer (OC) is not clearly understood. This study evaluates the effect of MBZ on OC cell lines OVCAR3 and OAW42, focusing on cell proliferation, migration, invasion, and cancer stemness. The underlying mechanisms, including cytoskeletal disruption, epithelial-mesenchymal transition (EMT), and signaling pathways, were explored.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
Introduction: Primary cilia play an important role in the development of cancer by regulating signaling pathways. Several studies have demonstrated that women with mutations have, on average, 50% fewer ciliated cells compared with general women. However, the role of tubal cilia loss in the development of epithelial ovarian cancer (EOC) remains unclear.
View Article and Find Full Text PDFOncologist
January 2025
Léon Bérard Cancer Center, Department of Surgical and Medical Oncology-Lyon, Université Claude Bernard Lyon 1, Lyon, France.
Ovarian clear cell carcinoma (OCCC) accounts for ~10% of all epithelial ovarian cancers and is considered a different entity from the more common high-grade serous ovarian carcinoma (HGSC), with distinct clinical presentations, different risk, and prognostic factors, and specific molecular features. Most OCCCs are diagnosed at an early stage and show favorable outcomes, in contrast to those diagnosed at advanced stages, which exhibit intrinsic resistance to platinum-based chemotherapy regimens and a very poor prognosis. The standard treatment of advanced OCCC is currently based on primary debulking surgery followed by platinum-based chemotherapy according to recent international guidelines.
View Article and Find Full Text PDFHeliyon
January 2025
Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.
Although the accumulation of random genetic mutations has been traditionally viewed as the main cause of cancer progression, altered mechanobiological profiles of the cells and microenvironment also play a major role as a mutation-independent element. To probe the latter, we have previously reported a microfluidic cell-culture platform with an integrated flexible actuator and its application for sequential cyclic compression of cancer cells. The platform is composed of a control microchannel in a top layer for introducing external pressure, and a polydimethylsiloxane (PDMS) membrane from which a monolithically-integrated actuator protrudes downwards into a cell-culture microchannel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!