The effect of 2(3)-tert-butyl-4-hydroxyanisole (BHA) pretreatment of rats on both aflatoxin B1 (AFB1)-DNA binding and AFB1-glutathione has been examined with isolated hepatocytes and in intact rats. Young male F344 rats were fed AIN-76A diet with or without 0.75% BHA for 2 weeks. Even though there were no significant differences in either cytochrome P-450 or reduced glutathione contents, there were marked differences in AFB1 metabolism in isolated hepatocytes from these two groups. Thus, at the 33 nM AFB1 level, AFB1-DNA binding was 3-fold higher in control compared to BHA-treated hepatocytes whereas AFB1-glutathione conjugation was 5-fold higher in treated compared to controls. Even at higher AFB1 concentrations (2 and 10 microM), DNA binding was 4-6-fold higher in controls whereas thiol conjugation was 5-9-fold higher in treated compared to control hepatocytes. Addition of 0.5-1.0 mM diethylmaleate did not have any significant effect in control hepatocytes whereas its presence produced about 70-100% increase in DNA binding with 65-80% inhibition of thiol conjugation in treated hepatocytes. Addition of 1 mM styrene oxide caused 75-100% and 4-8-fold increase in AFB1-DNA binding in control and treated hepatocytes, respectively, with corresponding decreases in thiol conjugation. In intact rats, BHA treatment reduced hepatic AFB1-DNA binding to 15% of controls with concomitant increase in biliary excretion of AFB1-reduced glutathione conjugate. It appears that the induced cytosolic GSH S-transferases after BHA treatment of rats play a significant role in inhibiting hepatic AFB1-DNA binding and AFB1 hepatocarcinogenesis presumably by inactivation of the reactive AFB1-epoxide.

Download full-text PDF

Source

Publication Analysis

Top Keywords

afb1-dna binding
20
isolated hepatocytes
12
thiol conjugation
12
binding
8
hepatocytes
8
intact rats
8
higher treated
8
treated compared
8
dna binding
8
control hepatocytes
8

Similar Publications

Background: Genetic polymorphisms in DNA repair genes may influence individual variation in DNA repair capacity and may play an important role in carcinogenesis. We investigated the role of genetic polymorphisms at XRCC4 codon 247 (rs3734091, XRCC4P) and XRCC5 codon 180 (rs80309960, XRCC5P) in liver cancer (hepatocellular carcinoma) caused by aflatoxin B1 (AFB1).

Methods: A hospital-based case-control study, including 1499 liver cancer cases and 2045 controls without any liver disease, was conducted in a high aflatoxin exposure area in the Guangxi region of China to assess the relationship between these two polymorphisms and aflatoxin-related liver cancer risk and prognosis.

View Article and Find Full Text PDF

Unlabelled: X-ray repair complementing group 4 (XRCC4) is very important in maintaining overall genome stability and may play an important role in carcinogenesis. We aimed to investigate the role of polymorphisms in the coding region of this gene in hepatocellular carcinoma (HCC) caused by aflatoxin B1 (AFB1). A hospital-based case-control study, including 1,499 HCC cases and 2,045 controls without any liver diseases or tumors, was conducted in a high AFB1 exposure area (the Guangxi region) to assess the relationship between 21 polymorphisms in the coding region of XRCC4 and AFB1-related HCC risk and prognosis.

View Article and Find Full Text PDF

Aflatoxin B₁ (AFB₁) is a DNA-binding toxin that contributes to the burden of liver cancer in tropical areas. AFB₁-DNA adducts are powerful biomarkers that discern individual and population risk from exposure to this carcinogen. The discovery of concordance between the metabolic pathways of the male Fischer rat and humans allowed data from rats to guide the development of chemoprevention strategies employed in clinical trials in high-risk regions.

View Article and Find Full Text PDF

Unlabelled: Genetic polymorphisms in DNA repair genes may influence individual variations in DNA repair capacity, and this may be associated with the risk and outcome of hepatocellular carcinoma (HCC) related to aflatoxin B1 (AFB1) exposure. In this study, we focused on the polymorphism of xeroderma pigmentosum complementation group C (XPC) codon 939 (rs#2228001), which is involved in nucleotide excision repair. We conducted a case-control study including 1156 HCC cases and 1402 controls without any evidence of hepatic disease to evaluate the associations between this polymorphism and HCC risk and prognosis in the Guangxi population.

View Article and Find Full Text PDF

Objective: To explore the association of the Thr241Met polymorphism of X-ray cross-complementing group 3 (XRCC3) gene with genetic susceptibility to aflatoxin B1(AFB-1)-related hepatocellular carcinoma (HCC)in Guangxi population.

Methods: We conducted a hospital-based case-control study, including 257 HCC cases and 711 controls without cancers or liver diseases. The XRCC3 Thr241Met polymorphism was analyzed by PCR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!