Parkinson's disease (PD) is the second most common disorder of the central nervous system due to the degeneration of mesencephalic dopaminergic neurons. Current treatments for PD have a symptomatic relief strategy with no prevention of disease progression. Due to the neuroprotective and antiapoptotic potential of the natural dipeptide carnosine, this study was conducted to assess its beneficial effect in 6-hydroxydopamine (6-OHDA)-induced model of PD in rat. Unilateral intrastriatal 6-OHDA-lesioned rats received i.p. carnosine at a dose of 250 mg/kg twice at an interval of 24 h, which started presurgery. Apomorphine caused contralateral rotations, a significant reduction in the number of Nissl-stained neurons on the left side of the substantia nigra, and increased apoptosis was observed with enhanced oxidative stress burden in 6-OHDA-lesioned rats. Carnosine pretreatment significantly reduced rotations, attenuated apoptosis, and restored malondialdehyde and nitrite content and catalase activity with no significant effect on reduced glutathione (GSH). These results indicate that prelesion administration of carnosine could exert neuroprotection against 6-OHDA toxicity, and this may be of benefit in patients with early PD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-014-8771-0DOI Listing

Publication Analysis

Top Keywords

6-ohda-lesioned rats
8
carnosine
5
carnosine exerts
4
exerts neuroprotective
4
neuroprotective 6-hydroxydopamine
4
6-hydroxydopamine toxicity
4
toxicity hemiparkinsonian
4
hemiparkinsonian rat
4
rat parkinson's
4
parkinson's disease
4

Similar Publications

The anti-dyskinetic effect of the clinic-ready mGluRpositive allosteric modulator AZD8529 in the 6-OHDA-lesioned rat.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.

L-3,4-dihydroxyphenylalanine (L-DOPA) remains the main treatment for motor symptoms of Parkinson's disease (PD). However, chronic use is associated with the development of complications such as L-DOPA-induced dyskinesia. We previously demonstrated that LY-487,379, a highly selective metabotropic glutamate receptor 2 (mGluR2) positive allosteric modulator (PAM), reduces the severity of L-DOPA-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD, without interfering with the anti-parkinsonian action of L-DOPA.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.

View Article and Find Full Text PDF

Pramipexole decreases allodynia and hyperalgesia via NF-κB in astrocytes in rats with Parkinson's disease.

Pharmacol Biochem Behav

February 2025

Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla, No. 3001, C.P. 76230, Querétaro, Mexico.

Pain is one of the principal non-motor symptoms of Parkinson's disease (PD), negatively impacting the patient's quality of life. This study aimed to demonstrate whether an effective dose of pramipexole (PPX) can modulate the NF-κB/p-p65 activation in glial cells (astrocytes and microglia) and diminish the hypersensitivity (allodynia and hyperalgesia) in male Wistar rats with PD. For this, 2 μl of 6-hydroxydopamine (6-OHDA, 8 μg/μL/0.

View Article and Find Full Text PDF

Introduction: Parkinson's disease (PD) is commonly characterized by severe dopamine (DA) depletion within the substantia nigra (SN) leading to a myriad of motor and non-motor symptoms. One underappreciated and prevalent non-motor symptom, Parkinson's disease-associated psychosis (PDAP), significantly erodes patient and caregiver quality of life yet remains vastly understudied. While the gold standard pharmacotherapy for motor symptoms Levodopa (LD) is initially highly effective, it can lead to motor fluctuations like LD-induced dyskinesia (LID) and non-motor fluctuations such as intermittent PDAP.

View Article and Find Full Text PDF

Neuropeptide-S (NPS) has been demonstrated to mitigate learning and memory deficits in experimental models of Parkinson's Disease (PD). Despite this, the precise mechanisms through which NPS exerts its influence on cognitive functions remain to be fully unknown. This study aims to elucidate the effects of central administration of NPS on learning and memory deficits associated with an experimental rat hemiparkinsonian model, examining both electrophysiological and molecular parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!