Tailoring the properties of quadruplex nucleobases for biological and nanomaterial applications.

Phys Chem Chem Phys

CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, Brno, CZ-625 00, Czech Republic.

Published: August 2014

Guanine DNA quadruplexes are interesting and important biological objects because they represent potential targets for regulatory drugs. Their use as building blocks for biomaterial applications is also being investigated. This contribution reports the in silico design of artificial building blocks derived from xanthine. Methods of quantum chemistry were used to evaluate the properties of xanthine structures relative to those containing guanine, the natural reference used. Tailoring the xanthine core showed that the base stacking and the ion coordination were significantly enhanced in the designed systems, while the ion-transport properties were not affected. Our study suggests that the 9-deaza-8-haloxanthine bases (where the halogen is fluorine or chlorine) are highly promising candidates for the development of artificial quadruplexes and quadruplex-active ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp00541dDOI Listing

Publication Analysis

Top Keywords

building blocks
8
tailoring properties
4
properties quadruplex
4
quadruplex nucleobases
4
nucleobases biological
4
biological nanomaterial
4
nanomaterial applications
4
applications guanine
4
guanine dna
4
dna quadruplexes
4

Similar Publications

Tumour-infiltrating Lymphocytes and Radiation Therapy in Rectal Cancer: Systematic Review and Meta-analysis.

Clin Oncol (R Coll Radiol)

December 2024

Faculty of Medicine and Health Sciences, University of Antwerp, Prinsstraat 13, 2000, Antwerp, Belgium; Department of Radiation Oncology, Iridium Netwerk, Oosterveldlaan 22, 2610, Antwerp, Belgium. Electronic address:

Aim: Tumour-infiltrating lymphocytes (TILs) represent a promising cancer biomarker. Different TILs, including CD8+, CD4+, CD3+, and FOXP3+, have been associated with clinical outcomes. However, data are lacking regarding the value of TILs for patients receiving radiation therapy (RT).

View Article and Find Full Text PDF

The functional properties of tetraaryl compounds, M(aryl) (M = transition metal or group 14 element), are dictated not only by their common tetrahedral geometry but also by their central atom. The identity of this atom may serve to modulate the reactivity, electrochemical, magnetic, and optical behavior of the molecular species, or of extended materials built from appropriate tetraaryl building blocks, but this has not yet been systematically evaluated. Toward this goal, here we probe the influence of Os(IV), C, and Si central atoms on the spectroelectrochemical properties of a series of redox-active tetra(ferrocenylaryl) complexes.

View Article and Find Full Text PDF

Nanophotonic inspection of deep-subwavelength integrated optoelectronic chips.

Sci Adv

January 2025

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China.

Artificial nanostructures with ultrafine and deep-subwavelength features have emerged as a paradigm-shifting platform to advanced light-field management, becoming key building blocks for high-performance integrated optoelectronics and flat optics. However, direct optical inspection of integrated chips remains a missing metrology gap that hinders quick feedback between design and fabrications. Here, we demonstrate that photothermal nonlinear scattering microscopy can be used for direct imaging and resolving of integrated optoelectronic chips beyond the diffraction limit.

View Article and Find Full Text PDF

Exploration of new π-conjugated building blocks for construction of supramolecular polymers is at the forefront of self-assembly. Herein, we incorporate a highly planar anthanthrene skeleton into the design of two supramolecular monomers 1 and 2. Their supramolecular polymerization have been comprehensively investigated by spectroscopic studies.

View Article and Find Full Text PDF

Mechanofluorochromism (MFC) and mechanoluminescence (ML) materials have garnered significant attention from researchers due to their potential applications in anti-counterfeiting, optical recording, photodynamic therapy, bioimaging, stress sensing, display technology, and ink-free printing paper. Among the various building blocks utilized in these materials, phenothiazine (PTZ) has emerged as a widely employed fundamental component owing to its distinctive electronic and optical properties as well as its facile modification capabilities. Summarizing the recent progress of PTZ derivatives and analogues in this field holds practical significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!