When transition metal sulfides such as MoS2 are present in the single-layer form, the electronic properties change in fundamental ways, enabling them to be used, e.g., in two-dimensional semiconductor electronics, optoelectronics, and light harvesting. The change is related to a subtle modification of the band structure due to confinement in the direction perpendicular to the sheets, and there is a considerable interest in understanding how this modification can be controlled and adjusted to generate 2D-materials with functional properties. In this article we report a synthesis procedure together with scanning tunneling microscopy and X-ray photoelectron spectroscopy characterization of two-dimensional single-layer islands of MoS2 synthesized directly on a gold single crystal substrate. Thanks to a periodic modulation of the atom stacking induced by the lattice mismatch, we observe a structural buckling of the MoS2 layer resulting in a characteristic moiré pattern. X-ray photoelectron spectroscopy indicates that the system develops the characteristics of n-doped MoS2 due to electron donation. Scanning tunneling spectroscopy furthermore reflects a convolution of MoS2 and Au donor states where the MoS2 band structure appears modified at the band gap edges. This electronic effect is further modulated by the moiré periodicity and leads to small substrate-induced electronic perturbations near the conduction band minimum in the band gap of MoS2. The results may be highly relevant in the context of nanopatterned two-dimensional materials on metal surfaces, and we propose the MoS2/Au system in this article as a promising candidate to further explore the properties of supported 2D transition-metal dichalcogenides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn502812nDOI Listing

Publication Analysis

Top Keywords

electronic properties
8
mos2
8
band structure
8
scanning tunneling
8
x-ray photoelectron
8
photoelectron spectroscopy
8
band gap
8
band
5
structure electronic
4
properties
4

Similar Publications

Identifying and quantifying the dominant factors influencing heavy metal (HM) pollution sources are essential for maintaining soil ecological health and implementing effective pollution control measures. This study analyzed soil HM samples from 53 different land use types in Jiaozuo City, Henan Province, China. Pollution sources were identified using Absolute Principal Component Score (APCS), with 8 anthropogenic factors, 9 natural factors, and 4 soil physicochemical properties mapped using Geographic Information System (GIS) kernel density estimation.

View Article and Find Full Text PDF

This study aimed to investigate the potential protective properties of a traditional Chinese medicine (TCM) herbal product, Siraitia grosvenorii granules (SGG) against PM2.5-induced lung injury, as well as their active constituents and underlying mechanisms. The chemical composition of SGG, such as wogonin (MOL000173), luteolin (MOL000006), nobiletin (MOL005828), naringenin (MOL004328), acacetin (MOL001689), were identified via ultra-high-performance liquid chromatography-Q Exactive (UHPLC-QE) Orbitrap/MS.

View Article and Find Full Text PDF

We have successfully prepared a significant number of nanowires from non-toxic silicon sources. Compared to the SiO silicon source used in most other articles, our preparation method is much safer. It provides a simple and harmless new preparation method for the preparation of silicon nanowires.

View Article and Find Full Text PDF

Seizure detection via reservoir computing in MoS-based charge trap memory devices.

Sci Adv

January 2025

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

Neurological disorders are a substantial global health burden, affecting millions of people worldwide. A key challenge in developing effective treatments and preventive measures is the realization of low-power wearable systems with early detection capabilities. Traditional strategies rely on machine learning algorithms, but their computational demands often exceed what miniaturized systems can provide.

View Article and Find Full Text PDF

Stable Luminescent Diradicals: The Emergence and Potential Applications.

Angew Chem Int Ed Engl

January 2025

Jilin University, College of Electronic Science and Engineering, State Key Laboratory of Integrated Optoelectronics, Qianjin Avenue 2699, Changchun, 130012, Changchun, CHINA.

Stable luminescent diradicals, characterized by the presence of two unpaired electrons, exhibit unique photophysical properties that are sensitive to external stimuli such as temperature, magnetic fields, and microwaves. This sensitivity allows the manipulation of their spin states and luminescence, setting them apart from traditional closed-shell luminescent molecules and luminescent monoradicals. As a result, luminescent diradicals are emerging as promising candidates for a variety of applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!