Pontocerebellar hypoplasia (PCH) comprises a rare group of neurodegenerative disorders with variable symptoms of cerebellar ataxia. Several gene mutations have been reported to be associated with different presentations of PCH. In the present study, an extended familial case of late‑onset hereditary ataxia mimicking PCH in respect of clinical manifestation, neuroradiological findings and genetic analysis is described. By means of direct sequencing, a novel heterozygous mutation was found in the TSEN54 gene by c.254A > T(+) (p.E85V), which may be a new subtype of hereditary ataxia. However, this subtype was shown to exhibit late onset, differing from PCH with prenatal onset and predominantly affecting the growth of neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2014.2342 | DOI Listing |
Orphanet J Rare Dis
January 2025
Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China.
Background: Non-isolated auditory neuropathy (AN), or syndromic AN, is marked by AN along with additional systemic manifestations. The diagnostic process is challenging due to its varied symptoms and overlap with other syndromes. This study focuses on two mitochondrial function-related genes which result in non-isolated AN, FDXR and TWNK, providing a summary and enrichment analysis of genes associated with non-isolated AN to elucidate the genotype-phenotype correlation and underlying mechanisms.
View Article and Find Full Text PDFIntroduction: COQ4 mutation often leads to a fatal multi-system disease in infants. Recently, it was reported that the biallelic COQ4 variants may be a potential cause of hereditary spastic paraplegia (HSP). This study aims to describe the clinical features and genotype of the COQ4 associated hereditary spastic paraplegia (HSP).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
Mitochondrial dysfunction is implicated in the pathogenesis of the neurological condition autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), yet precisely how the mitochondrial metabolism is affected is unknown. Thus, to better understand changes in the mitochondrial metabolism caused by loss of the sacsin protein (encoded by the SACS gene, which is mutated in ARSACS), we performed mass spectrometry-based tracer analysis, with both glucose- and glutamine-traced carbon. Comparing the metabolite profiles between wild-type and sacsin-knockout cell lines revealed increased reliance on aerobic glycolysis in sacsin-deficient cells, as evidenced by the increase in lactate and reduction of glucose.
View Article and Find Full Text PDFEur J Neurol
January 2025
Institut du Cerveau-Paris Brain Institute ICM, Sorbonne Université, Inserm 1127, CNRS 7225, Hôpital de la Pitié Salpêtrière Paris, Paris, France.
Objective: Spinocerebellar ataxias (SCA) are neurodegenerative diseases with widespread lesions across the central nervous system. Ataxia and spasticity are usually predominant, but patients may also present with parkinsonism. We aimed to characterize substantia nigra pars compacta (SNc) degeneration in SCA2 and 7 using neuromelanin-sensitive imaging.
View Article and Find Full Text PDFAutosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!