The interaction of petawatt (10(15) W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083416 | PMC |
http://dx.doi.org/10.1038/ncomms5149 | DOI Listing |
Talanta
December 2024
College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, China. Electronic address:
In the study, an eccentric heterogeneous core-shell nanomaterial Au@CuSe was simply and rapidly synthesized. This novel nano-structure exhibits superior colorimetric intensity, enhanced antibody coupling efficiency, and strong broadband absorption across the visible to near-infrared spectrum, with a photothermal conversion efficiency of 59.40%.
View Article and Find Full Text PDFJACS Au
December 2024
Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China.
The significance of the nonoxidative dehydrogenation of middle-chain alkanes into corresponding alkenes is increasing in the context of the world's declining demands on transportation fuels and the growing demand for chemicals and materials. The middle-chain alkenes derived from the dehydrogenation reaction can be transformed into value-added chemicals in downstream processes. Due to the presence of multiple potential reaction sites, the reaction mechanism of the dehydrogenation of middle-chain alkanes is more complicated than that in the dehydrogenation of light alkanes, and there are few prior studies on elucidating their detailed structure-reactivity relationship.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Fujian Key Laboratory of Leather Green Design and Manufacture, Jinjiang 362271, Fujian, China.
Applying cationic waterborne polyurethane (CWPU) in the leather color-fixing process can improve the dyeing rate and enhance color fastness. However, under prolonged exposure to sunlight, CWPU will age and degrade and the leather will fade in color, become stiff and crack easily. In this study, an Ultraviolet absorber was introduced into cationic waterborne polyurethane (UVCWPU) and quaternary ammonium Lignosulfonate (QLS) was prepared by quaternization.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu 620015, India. Electronic address:
R - C(S) - NH - N = CH - R [R = o-OCHCH & R = CHN (2-EBP), R = o-OCHCH & R = CHNO (2-EBM), R = p-OCHCH & R = CHN (4-EBP), and R = p-OCHCH & R = CHNO (4-EBM)] have been synthesized. The ligands have been verified via various spectroscopic methods such as IR, NMR, etc. Single-crystal X-ray diffraction methods were applied to identify the structure of 4-EBP.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
This study presents an innovative methane gas sensor design based on anti-resonant hollow-core fiber (AR-HCF) technology, optimized for high-precision detection at 3.3[Formula: see text]. Our numerical analysis explores the geometric optimization of the AR-HCF's structural parameters, incorporating real-world component specifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!