Diurnal rhythms have been observed in human behaviors as diverse as sleep, olfaction, and learning. Despite its potential impact, time of day is rarely considered when brain responses are studied by neuroimaging techniques. To address this issue, we explicitly examined the effects of circadian and homeostatic regulation on functional connectivity (FC) and regional cerebral blood flow (rCBF) in healthy human volunteers, using whole-brain resting-state functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling (ASL). In common with many circadian studies, we collected salivary cortisol to represent the normal circadian activity and functioning of the hypothalamic-pituitary-adrenal (HPA) axis. Intriguingly, the changes in FC and rCBF we observed indicated fundamental decreases in the functional integration of the default mode network (DMN) moving from morning to afternoon. Within the anterior cingulate cortex (ACC), our results indicate that morning cortisol levels are negatively correlated with rCBF. We hypothesize that the homeostatic mechanisms of the HPA axis has a role in modulating the functional integrity of the DMN (specifically, the ACC), and for the purposes of using fMRI as a tool to measure changes in disease processes or in response to treatment, we demonstrate that time of the day is important when interpreting resting-state data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158665PMC
http://dx.doi.org/10.1038/jcbfm.2014.109DOI Listing

Publication Analysis

Top Keywords

circadian homeostatic
8
functional connectivity
8
connectivity regional
8
regional cerebral
8
cerebral blood
8
blood flow
8
time day
8
hpa axis
8
functional
5
circadian
4

Similar Publications

Circadian disruption of feeding-fasting rhythm and its consequences for metabolic, immune, cancer, and cognitive processes.

Biomed J

January 2025

ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina. Electronic address:

The circadian system is composed by a central hypothalamic clock at the suprachiasmatic nuclei (SCN) that communicates with peripheral circadian oscillators for daily coordination of behavior and physiology. The SCN entrain to the environmental 24-h light-dark (LD) cycle and drive daily rhythms of internal synchronizers such as core body temperature, hypothalamic-hypophysary hormones, sympathetic/parasympathetic activity, as well as behavioral and feeding-fasting rhythms, which supply signals setting core molecular clocks at central and peripheral tissues. Steady phase relationships between the SCN and peripheral oscillators keep homeostatic processes such as microbiota/microbiome composition/activity, metabolic supply/demand, energy balance, immunoinflammatory process, sleep amount and quality, psychophysiological stress, etc.

View Article and Find Full Text PDF

Maintaining homeostasis is essential for continued health, and the progressive decay of homeostatic processes is a hallmark of ageing. Daily environmental rhythms threaten homeostasis, and circadian clocks have evolved to execute physiological processes in a manner that anticipates, and thus mitigates, their effects on the organism. Clocks are active in almost all cell types; their rhythmicity and functional output are determined by a combination of tissue-intrinsic and systemic inputs.

View Article and Find Full Text PDF

Clock-Sleep Communication.

Curr Mol Med

December 2024

Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India.

Rhythmicity is a characteristic feature of the inanimate universe. The organization of biological rhythms in time is an adaptation to the cyclical environmental changes brought on by the earth's rotation on its axis and around the sun. Circadian (L.

View Article and Find Full Text PDF

Complement Immune System in Pulmonary Hypertension-Cooperating Roles of Circadian Rhythmicity in Complement-Mediated Vascular Pathology.

Int J Mol Sci

November 2024

Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA.

Originally discovered in the 1890s, the complement system has traditionally been viewed as a "compliment" to the body's innate and adaptive immune response. However, emerging data have shown that the complement system is a much more complex mechanism within the body involved in regulating inflammation, gene transcription, attraction of macrophages, and many more processes. Sustained complement activation contributes to autoimmunity and chronic inflammation.

View Article and Find Full Text PDF

Study Objectives: Sleep/wakefulness is regulated by intracellular signaling pathways composed of protein kinases such as salt-inducible kinase 3 (Sik3). Sik3-deficiency in neurons decreases NREM sleep time and electroencephalogram (EEG) delta power during NREM sleep, while Sik3Slp mice lacking a protein kinase A (PKA)-phosphorylation site, S551, show hypersomnia phenotype. In this study, we examined how a phosphomimetic mutation of the 221st threonine residue (T221E), which provides a partial (weak) constitutive activity of the kinase, affects sleep/wakefulness and circadian behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!