Zr(IV) loaded cross-linked chitosan beads with enhanced surface area for the removal of nitrate and phosphate.

Int J Biol Macromol

Department of Chemistry, The Gandhigram Rural Institute-Deemed University, Gandhigram, Dindigul 624 302, Tamil Nadu, India. Electronic address:

Published: August 2014

In this work, a new method namely silica dissolution method, has been adapted to increase the surface area of the cross-linked chitosan beads. Zr(IV) was loaded in the cross-linked chitosan beads in order to make it selective for the nitrate and phosphate anions from aqueous solutions. Zr(IV) loaded cross-linked chitosan beads prepared by normal method (ZrCB) and silica dissolution method (SD-ZrCB) were characterised using N2 adsorption/desorption studies, SEM, EDAX, XRD, FTIR, TGA, DTA and water regain property. The SD-ZrCB exhibited higher N2 adsorption, water regain property as well as anion adsorption capacity than ZrCB. Batch method was adapted for the adsorption studies. The nitrate and phosphate adsorbed SD-ZrCB was regenerated using 0.025M NaCl solution. There was not much drop in adsorption capacities up to 10th regeneration cycle. Freundlich adsorption isotherm was the best fit adsorption isotherm among Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherms which have been used to fit the nitrate and phosphate adsorption data. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated in order to understand the nature of adsorption process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2014.05.043DOI Listing

Publication Analysis

Top Keywords

cross-linked chitosan
16
chitosan beads
16
nitrate phosphate
16
zriv loaded
12
loaded cross-linked
12
surface area
8
silica dissolution
8
dissolution method
8
method adapted
8
water regain
8

Similar Publications

Dual physiological responsive structural color hydrogel particles for wound repair.

Bioact Mater

April 2025

Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

Hydrogel-based patches have demonstrated their values in diabetic wounds repair, particularly those intelligent dressings with continuous repair promoting and monitoring capabilities. Here, we propose a type of dual physiological responsive structural color particles for wound repair. The particles are composed of a hyaluronic acid methacryloyl (HAMA)-sodium alginate (Alg) inverse opal scaffold, filled with oxidized dextran (ODex)/quaternized chitosan (QCS) hydrogel.

View Article and Find Full Text PDF

Fe-loaded red radish anthocyanin (RRA) and zein composite nanoparticles (FZNPs) were firstly prepared to enhance the color and stability of RRA. The addition of Fe caused anthocyanin to form color chelates, enhancing its pH color sensitivity. The prepared FZNPs showed good stability and anthocyanin retention during long-term storage.

View Article and Find Full Text PDF

In order to address the issue of food contamination by microorganisms and effectively harness the antibacterial properties of nisin, we attempted to incorporate nisin into natural polymer films while addressing its inherent instability. An antibacterial food packaging film based on carboxymethyl chitosan (CCS) binding with L-cysteine (CYS) and oxidized konjac glucomannan (OKG) was developed through both Schiff base reaction and addition reaction of thiol aldehyde. To analyze the effect of addition reaction of thiol aldehyde on the CCS-CYS/OKG films' physicochemical properties, the CCS-CYS was prepared with different CYS combination rates, which were further used to fabricate composite films.

View Article and Find Full Text PDF

Polyvinyl alcohol/chitosan hydrogel based on deep eutectic solvent for promoting methicillin-resistant Staphylococcus aureus-infected wound healing.

Int J Biol Macromol

January 2025

School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China. Electronic address:

Bacterial-infected wounds usually lead to slow wound healing due to increased inflammation, especially wounds infected by drug-resistant bacteria, which is a serious challenge in the biomedical field. Traditional antimicrobial strategies such as antibiotics lead to a significant increase in drug-resistant strains and have limited efficacy. Therefore, there is an urgent need to develop multifunctional dressings with excellent antibacterial activity and promotion of wound healing.

View Article and Find Full Text PDF

This research explores the biosorption of Rhodamine B (Rd-B) and Sunset Yellow (SY) dyes using cross-linked chitosan-alginate (Ch-A) biocomposite beads, combining experimental investigations with theoretical studies to elucidate the biosorption mechanisms. The biocomposite beads were synthesized through an eco-friendly cross-linking method, and their structural properties were characterized using various characterization techniques. Complementary theoretical studies using Monte Carlo (MC) simulations and molecular dynamics (MD) calculations provided insights into the molecular interactions between the dyes and the biocomposite beads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!