AI Article Synopsis

  • The study focused on creating chitosan microspheres loaded with levofloxacin and assessing their performance both in lab tests and live models.
  • The microspheres, made through a spray-drying process, displayed good characteristics like a uniform size of about 4.96 μm, high encapsulation efficiency (81.1%), and sustained drug release patterns.
  • In vivo experiments indicated that these microspheres could maintain effective drug levels over time with fewer side effects, increasing treatment efficiency and reducing the need for frequent dosing without harmful effects on the colon or rectum.

Article Abstract

The aim of this study was to prepare levofloxacin-loaded chitosan microspheres and to evaluate their in vitro and in vivo characteristics. Glutaraldehyde-crosslinked microspheres were prepared using a spray-drying method, and characterized in terms of the morphological examination, particle size distribution, entrapment efficiency, drug loading and in vitro release. Pharmacokinetics and colon biodistribution studies were used to evaluate that microspheres have more advantage than the conventional formulations. The surface morphology of the freeze-dried microspheres were smooth, discrete with a regular spherical to near-spherical shape. Size of the microspheres after freeze-drying was 4.96 ± 0.76 μm and well-distributed. The zeta potential of microspheres was -29.3 ± 2.1 mV. An average drug loading of 9.3 ± 0.4% and encapsulation efficiency of 81.1 ± 4.7% of levofloxacin microspheres were obtained with the optimized preparation parameters. The cumulative release rate of levofloxacin microspheres was followed by a sustained release and fitted for classic Higuchi kinetic model. In vivo studies showed that chitosan microspheres are thought to have the potential to maintain levofloxacin concentration within target ranges for a long time, decreasing side effects caused by concentration fluctuation, ensuring the efficiency of treatment and improving patient compliance by reducing dosing frequency. It also does not cause any harmful or toxic effect in colon and rectum as evaluated by histopathologic studies.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10717544.2014.926429DOI Listing

Publication Analysis

Top Keywords

microspheres
10
vitro vivo
8
vivo studies
8
chitosan microspheres
8
drug loading
8
levofloxacin microspheres
8
preparation oral
4
levofloxacin
4
oral levofloxacin
4
levofloxacin colon-specific
4

Similar Publications

Herein, porous SnO microspheres in a three-dimensional (3D) hierarchical architecture were successfully synthesized via a facile hydrothermal route utilizing d-(+)-glucose and cetyltrimethylammonium bromide (CTAB), which act as reducing and structure-directing agents, respectively. Controlled adjustment of the CTAB to glucose mole ratio, reaction temperature, reaction time, and the calcination parameters all provided important clues toward optimizing the final morphologies of SnO with exceptional structural stability and reasonable monodispersity. Electron microscopy analysis revealed that microspheres formed were hierarchical self-assemblies of numerous primary SnO nanoparticles of ∼3-8 nm that coalesce together to form nearly monodispersed and ordered spherical structures of sizes in the range of 230-250 nm and are appreciably porous.

View Article and Find Full Text PDF

Nanozymes open up new avenues for amplifying signals in photoelectrochemical (PEC) biosensing, which are yet limited by the generated small-molecule signal reporters. Herein, a multifunctional nanoenzyme of Pt NPs/CoSAs@NC consisting of Co single atoms on N-doped porous carbon decorated with Pt nanoparticles is successfully synthesized for cascade catalytic polymerization of dopamine for constructing a highly sensitive photocurrent-polarity-switching PEC biosensing platform. Taking protein tyrosine phosphatase 1B (PTP1B) as a target model, Pt NPs/CoSAs@NC nanoenzymes are linked to magnetic microspheres via phosphorylated peptides.

View Article and Find Full Text PDF

This study presents the development and characterization of high yttrium-content phosphate-based glass-ceramic microspheres for potential applications in bone cancer radiotherapy treatment. The microspheres produced via flame spheroidization, followed by sieving, revealed a lack of aggregation and a narrow size distribution (45-125 μm) achieved across different yttrium oxide to glass ratio samples. Energy dispersive X-ray (EDX) analysis showed a significant increase in yttrium content within the microspheres with increasing yttrium oxide to glass ratio samples, ranging from approximately 1-39 mol % for 10Y-50Y microspheres, respectively.

View Article and Find Full Text PDF

The synthesis of an iron tailings-based geopolymer with synergistic electromagnetic wave consumption property.

Environ Res

January 2025

School of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China; Zijin School of Geology and Mining, Fuzhou University, Fuzhou, Fujian, 350108, China; Fujian Key Laboratory of Green Extraction and High-value Utilization of Energy Metals, Fuzhou University, Fuzhou, Fujian 350108, China.

In this study, combination of wave absorption materials with different loss mechanisms are added into iron ore tailings-blast furnace slag (IOT-BFS) based geopolymers. The employed materials are hollow glass microsphere (HGM), carbon nanotubes (CNT) and carbonyl iron powder (CIP). Microstructures of the geopolymers are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and concrete porous structure analyzer.

View Article and Find Full Text PDF

Microplastics (MP) are suitable substrates for the colonization of harmful microalgal cells and the adsorption of their lipophilic compounds including phycotoxins. Moreover, such interactions likely change as physical-chemical characteristics of the MP surface are gradually modified during plastic degradation in aquatic environments. Using a combination of innovative laboratory experiments, this study systematically investigated, for the first time, the influence of various MP characteristics (polymeric composition, shape, size, and/or surface roughness) on its capacity to carry both living harmful algal cells and dissolved phycotoxins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!