Characterization of the degradation products of a color-changed monoclonal antibody: tryptophan-derived chromophores.

Anal Chem

MedImmune , Analytical Biotechnology, One MedImmune Way, Gaithersburg, Maryland 20878, United States.

Published: July 2014

We describe the characterization of degradation products responsible for color change in near UV-visible light-irradiated and heat-stressed monoclonal antibody (mAb) drug product in liquid formulation. The treated samples were characterized using reversed-phase HPLC and size-exclusion HPLC with absorption spectroscopy. Both methods showed color change was due to chromophores formed on the mAb but not associated with the formulation excipients in both light-irradiated and heat-stressed mAb samples. These chromophores were further located by a new peptide mapping methodology with a combination of mass spectrometry and absorption spectroscopy. Mass spectrometry identified the major tryptophan oxidation products as kynurenine (Kyn), N-formylkynurenine (NFK), and hydroxytryptophan (OH-Trp). The absorption spectra showed that each of the tryptophan oxidation products exhibited a distinct absorption band above 280 nm shifted to the longer wavelengths in the order of OH-Trp < NFK < Kyn. The Kyn-containing peptide was detected by absorption at 420 nm. No new absorption bands were observed for either methionine or histidine oxidation products. This confirmed that tryptophan oxidation products, but not methionine and histidine oxidation products, were responsible for the color change. It is worth noting that a new oxidation product with the loss of hydrogen (2 Da mass decrease) for Trp-107 of the heavy chain was identified in the heat-stressed mAb sample. This oxidized tryptophan residue exhibited a distinct absorption band at the maximum absorbance wavelength 335 nm, which is responsible for the color change to yellow. This study showed that the new peptide mapping methodology with a combination of mass spectrometry and absorption spectroscopy is useful to identify tryptophan oxidation products as chromophores responsible for color change in stressed mAb drug product.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac404218tDOI Listing

Publication Analysis

Top Keywords

oxidation products
24
color change
20
responsible color
16
tryptophan oxidation
16
absorption spectroscopy
12
mass spectrometry
12
characterization degradation
8
products
8
degradation products
8
monoclonal antibody
8

Similar Publications

Changeover method for biosafety cabinets using ozone gas.

PLoS One

January 2025

Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan.

This study evaluated the effectiveness of a biosafety cabinet equipped with an ozone generator, particularly during the transition periods between the production of cell products. As living cell products cannot undergo sterilization, maintaining an aseptic manufacturing environment is paramount. Raw materials, often derived from human tissues, are frequently contaminated with various resident bacteria, necessitating environmental resets after each process.

View Article and Find Full Text PDF

Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO lattice to improve the electrocatalytic efficiency.

View Article and Find Full Text PDF

Neomorphic leukemia-derived mutations in the TET2 enzyme induce genome instability via a substrate shift from 5-methylcytosine to thymine.

Proc Natl Acad Sci U S A

February 2025

Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai 201399, China.

Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine.

View Article and Find Full Text PDF

Aspartate Metabolism-Driven Gut Microbiota Dynamics and RIP-Dependent Mitochondrial Function Counteract Oxidative Stress.

Adv Sci (Weinh)

January 2025

Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.

Aspartate (Asp) metabolism-mediated antioxidant functions have important implications for neonatal growth and intestinal health; however, the antioxidant mechanisms through which Asp regulates the gut microbiota and influences RIP activation remain elusive. This study reports that chronic oxidative stress disrupts gut microbiota and metabolite balance and that such imbalance is intricately tied to the perturbation of Asp metabolism. Under normal conditions, in vivo and in vitro studies reveal that exogenous Asp improves intestinal health by regulating epithelial cell proliferation, nutrient uptake, and apoptosis.

View Article and Find Full Text PDF

Transition Metal-Coordinated Polymer Achieves Stable Seawater Oxidation over NiFe Layered Double Hydroxide.

Inorg Chem

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.

Seawater electrolysis has emerged as a promising approach for the generation of hydrogen energy, but the production of deleterious chlorine derivatives (e.g., chloride and hypochlorite) presents a significant challenge due to the severe corrosion at the anode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!