Nanotechnology-based approaches for the development of diagnostics, therapeutics, and vaccines.

Monoclon Antib Immunodiagn Immunother

1 Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.

Published: June 2014

The architecture of nanoparticles of biological origin, generally also known as bionanoparticles, presents several features that are ideal for their use in developing diagnostics, therapeutics, and vaccines. In this regard, particles formed by viral proteins using recombinant DNA technology resemble authentic virus particles. However, they lack infectivity due to the absence of genetic components such as DNA or RNA. Hence, they are designated as virus-like particles (VLP). VLPs possess the following characteristics: (1) they can be generated by either a single or a few viral proteins; (2) their size, formed by viral proteins, is in the range of 20 to100 nm; (3) the number of protein molecules required for particle assembly is from hundreds to thousands, depending on the VLP; (4) the protein(s) responsible for their assembly are amenable for manipulation; and (5) multiple proteins/peptides can be incorporated into a VLP. The potential advantages of VLPs directed by retroviral proteins are discussed in this review.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063366PMC
http://dx.doi.org/10.1089/mab.2014.0045DOI Listing

Publication Analysis

Top Keywords

viral proteins
12
diagnostics therapeutics
8
therapeutics vaccines
8
formed viral
8
proteins
5
nanotechnology-based approaches
4
approaches development
4
development diagnostics
4
vaccines architecture
4
architecture nanoparticles
4

Similar Publications

Impact of SARS-CoV-2 spike antibody positivity on infection and hospitalisation rates in immunosuppressed populations during the omicron period: the MELODY study.

Lancet

January 2025

Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK; Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK. Electronic address:

Background: In the UK, booster COVID-19 vaccinations have been recommended biannually to people considered immune vulnerable. We investigated, at a population level, whether the absence of detectable anti-SARS-CoV-2 spike protein IgG antibody (anti-S Ab) following three or more vaccinations in immunosuppressed individuals was associated with greater risks of infection and severity of infection.

Methods: In this prospective cohort study using UK national disease registers, we recruited participants with solid organ transplants (SOTs), rare autoimmune rheumatic diseases (RAIRDs), and lymphoid malignancies.

View Article and Find Full Text PDF

Intercellular communication is fundamental to multicellular life and a core determinant of outcomes during viral infection, where the common goals of virus and host for persistence and replication are generally at odds. Hosts rely on encoded innate and adaptive immune responses to detect and clear viral pathogens, while viruses can exploit or disrupt these pathways and other intercellular communication processes to enhance their spread and promote pathogenesis. While virus-induced signaling can result in systemic changes to the host, striking alterations are observed within the cellular microenvironment directly surrounding a site of infection, termed the virus microenvironment (VME).

View Article and Find Full Text PDF

In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein.

View Article and Find Full Text PDF

Interferon-Stimulated Genes and Immune Metabolites as Broad-Spectrum Biomarkers for Viral Infections.

Viruses

January 2025

Center for Virus-Host-Innate-Immunity, Institute for Infectious and Inflammatory Diseases, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.

The type I interferon (IFN-I) response is a critical component of the immune defense against various viral pathogens, triggering the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs encode proteins with diverse antiviral functions, targeting various stages of viral replication and restricting infection spread. Beyond their antiviral functions, ISGs and associated immune metabolites have emerged as promising broad-spectrum biomarkers that can differentiate viral infections from other conditions.

View Article and Find Full Text PDF

Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!