The black void behind the pupil was optically impenetrable before the invention of the ophthalmoscope by von Helmholtz over 150 years ago. Advances in retinal imaging and image processing, especially over the past decade, have opened a route to another unexplored landscape, the retinal neurovascular architecture and the retinal ganglion pathways linking to the central nervous system beyond. Exploiting these research opportunities requires multidisciplinary teams to explore the interface sitting at the border between ophthalmology, neurology and computing science. It is from the detail and depth of retinal phenotyping that novel metrics and candidate biomarkers are likely to emerge. Confirmation that in vivo retinal neurovascular measures are predictive of microvascular change in the brain and other organs is likely to be a major area of research activity over the next decade. Unlocking this hidden potential within the retina requires integration of structural and functional data sets, that is, multimodal mapping and longitudinal studies spanning the natural history of the disease process. And with further advances in imaging, it is likely that this area of retinal research will remain active and clinically relevant for many years to come. Accordingly, this review looks at state-of-the-art retinal imaging and its application to diagnosis, characterization and prognosis of chronic illness or long-term conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112401PMC
http://dx.doi.org/10.1259/bjr.20130832DOI Listing

Publication Analysis

Top Keywords

retinal imaging
12
retinal
8
diagnosis characterization
8
characterization prognosis
8
prognosis chronic
8
chronic illness
8
illness long-term
8
long-term conditions
8
retinal neurovascular
8
imaging source
4

Similar Publications

Background: We aimed to characterize factors associated with the under-studied complication of cognitive decline in aging people with long-duration type 1 diabetes (T1D).

Methods: Joslin "Medalists" (n = 222; T1D ≥ 50 years) underwent cognitive testing. Medalists (n = 52) and age-matched non-diabetic controls (n = 20) underwent neuro- and retinal imaging.

View Article and Find Full Text PDF

Purpose: To compare the amplitudes and implicit times of the oscillatory (OPs) of the full-field electroretinograms (ERGs) to those of the 30 Hz flicker ERGs in differentiating eyes with diabetic retinopathy (DR) from normal eyes.

Study Design: Single-center observational study.

Methods: Full-field ERGs were recorded in 55 patients with Type 2 diabetes mellitus (DM) and 20 normal control subjects.

View Article and Find Full Text PDF

Purpose: Cysticercosis, caused by Taenia solium larvae, can affect various ocular and extraocular structures, leading to significant morbidity. Ultrasound B-scan imaging plays a pivotal role in diagnosing and classifying cysticercosis lesions. The aim of the study was to describe the ultrasound B-scan characteristics of ocular and extraocular cysticercosis, proposing a classification system based on anatomical localization to enhance understanding and management.

View Article and Find Full Text PDF

Report of a Rare Syndromic Retinal Dystrophy: Asphyxiating Thoracic Dystrophy (Jeune Syndrome).

Turk J Ophthalmol

January 2025

İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Ophthalmology, İstanbul, Türkiye.

Jeune syndrome (JS), first described by Jeune as asphyxiating thoracic dystrophy, is an autosomal recessive osteochondrodysplasia with characteristic skeletal abnormalities and variable renal, hepatic, pancreatic, and ocular complications. Approximately 1 in every 100,000 to 130,000 babies is born with JS. Most patients with JS have respiratory distress due to inadequate lung development and many lose their lives due to respiratory failure.

View Article and Find Full Text PDF

The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!