The new affinity gel reported in this study was prepared using EUPERGIT C250L as a chromatographic bed material, to which etylenediamine spacer arms were attached to prevent steric hindrance between the matrix and ligand, and to facilitate effective binding of the CA-specific ligand, of the aromatic sulfonamide type for the purification of α-carbonic anhydrases (Cas; EC 4.2.1.1). Indeed, the aminoethyl moieties of the affinity gel were derivatized by reaction with 4-isothiocyanatobenzenesulfonamide, with the formation of a thiourea-based gel, having inhibitory effects against CAs. Both bovine erythrocyte carbonic anhydrase BCA and human (h) erythrocyte CA isoforms I, II (hCA I and II) have been purified from hemolysates, by using this affinity gel. The greatest purification fold and column yields for BCA and for cytosolic (hCA I + II) enzymes were of 181-fold (21.07%) and 184-fold (9.49%), respectively. Maximum binding was achieved at 15 °C and I = 0.3 ionic strength for α-carbonic anhydrases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/14756366.2014.912215 | DOI Listing |
Curr Pharm Des
January 2025
School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Hemophilia A (HA) is an inherited condition that is characterized by a lack of coagulation factor VIII (FVIII), which is needed for blood clotting. To produce recombinant factor VIII (rFVIII) for treatment, innovative methods are required. This study presents a thorough examination of the genetic engineering and biotechnological methods that are essential for the production of this complex process.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA.
In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes. H1 binds to the linker DNA of nucleosome to form the chromatosome, the next structural unit of chromatin. Structural features on individual chromatosomes contribute to chromatin structure, but not fully characterized.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
Thrombin binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers that efficiently binds to thrombin, resulting in anticoagulant effects. TBA also possesses promising antiproliferative properties. As with most therapeutic oligonucleotides, chemical modifications are critical for therapeutic applications, particularly to improve thermodynamic stability, resistance in biological environment, and target affinity.
View Article and Find Full Text PDFMolecules
December 2024
Chemical Engineering Department, University of Guadalajara-CUCEI, Blvd. Marcelino García Barragán #1421, esq. Calzada Olímpica, Guadalajara 44430, Jalisco, Mexico.
Tequila vinasses are organic wastes generated during ethanol fermentation at elevated temperatures (≥90 °C) and pH ≤ 4.0, making them hazardous to the environment. This paper describes a new, simplified UV-vis spectroscopy-based procedure for monitoring the adsorption of color compounds in tequila vinasses onto silica-based adsorbents, along with an optimized synthesis method to produce the most efficient sol-gel synthesized thiol-functionalized adsorbent.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Graduate School of Science and Engineering, Saitama University.
Gel coating films comprising nanodiamonds organo-modified with 12-hydroxystearic (12-OHC ) and stearic acids were prepared and characterized. Because molecules with 12-OHC groups can convert solvents into thixotropic gels, Gemini-type diamide derivatives with two 12-OHC chains were also introduced as thixotropic additives into the gel coating films. Although the 12-OHC -modified nanodiamonds did not lead to solvent gelation on their own, they displayed an affinity for the thixotropic additive molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!