Intervertebral disc degeneration is accompanied by elevated levels of inflammatory cytokines that have been implicated in disease etiology and matrix degradation. While the effects of inflammatory stimulation on disc cell metabolism have been well-studied, their effects on cell biophysical properties have not been investigated. The hypothesis of this study is that inflammatory stimulation alters the biomechanical properties of isolated disc cells and volume responses to step osmotic loading. Cells from the nucleus pulposus (NP) of bovine discs were isolated and treated with either lipopolysaccharide (LPS), an inflammatory ligand, or with the recombinant cytokine TNF-α for 24 hours. We measured cellular volume regulation responses to osmotic loading either immediately after stimulation or after a 1 week recovery period from the inflammatory stimuli. Cells from each group were tested under step osmotic loading and the transient volume-response was captured via time-lapse microscopy. Volume-responses were analyzed using mixture theory framework to investigate two biomechanical properties of the cell, the intracellular water content and the hydraulic permeability. Intracellular water content did not vary between treatment groups, but hydraulic permeability increased significantly with inflammatory treatment. In the 1 week recovery group, hydraulic permeability remained elevated relative to the untreated recovery control. Cell radius was also significantly increased both after 24 hours of treatment and after 1 week recovery. A significant linear correlation was observed between hydraulic permeability and cell radius in untreated cells at 24 hours and at 1-week recovery, though not in the inflammatory stimulated groups at either time point. This loss of correlation between cell size and hydraulic permeability suggests that regulation of volume change is disrupted irreversibly due to inflammatory stimulation. Inflammatory treated cells exhibited altered F-actin cytoskeleton expression relative to untreated cells. We also found a significant decrease in the expression of aquaporin-1, the predominant water channel in disc NP cells, with inflammatory stimulation. To our knowledge, this is the first study providing evidence that inflammatory stimulation directly alters the mechanobiology of NP cells. The cellular biophysical changes observed in this study are coincident with documented changes in the extracellular matrix induced by inflammation, and may be important in disease etiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061011 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099621 | PLOS |
mBio
January 2025
Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA.
causes the genital ulcer disease chancroid and cutaneous ulcers in children. To study its pathogenesis, we developed a human challenge model in which we infect the skin on the upper arm of human volunteers with to the pustular stage of disease. The model has been used to define lesional architecture, describe the immune infiltrate into the infected sites using flow cytometry, and explore the molecular basis of the immune response using bulk RNA-seq.
View Article and Find Full Text PDFHeliyon
January 2025
Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
The suppression of tyrosinase (TYR), a key enzyme in melanogenesis, has been suggested as an effective strategy for preventing melanin accumulation. We previously discovered the novel chrysin derivative hydroxyethyl chrysin (HE-chrysin) through an irradiation technique, which exerted higher anti-inflammatory and anti-cancer activities than original chrysin. In the present study, we explored whether HE-chrysin has antioxidant and anti-melanogenic capacity using B16F10 murine melanoma cells and molecular docking.
View Article and Find Full Text PDFJ Pain Res
January 2025
Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China.
Background: Acupuncture has long been used for migraine treatment as it is convenient for use and has remarkable efficacy. The acupuncture-based comprehensive treatment plan has been widely recognized for migraine prevention and treatment. However, the mechanism underlying acupuncture efficacy in migraine treatment is not yet completely understood.
View Article and Find Full Text PDFFront Neurosci
January 2025
Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
The vagus nerve (VN) is the primary parasympathetic nerve, providing two-way communication between the body and brain through a network of afferent and efferent fibers. Evidence suggests that altered VN signaling is linked to changes in the neuroimmune system, including microglia. Dysfunction of microglia, the resident innate immune cells of the brain, is associated with various neurodevelopmental disorders, including schizophrenia, attention deficit hyperactive disorder (ADHD), autism spectrum disorder (ASD), and epilepsy.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
Purpose: Allergic diseases have escalated to epidemic levels worldwide, impacting nearly 30% of the global population. Fungi are a significant source of allergens responsible for up to 6% of respiratory diseases in the general population. However, the specific cause of respiratory allergies often remains unidentified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!