The performance of a great variety of electronic devices--ranging from semiconductor transistors to superconducting qubits--is hampered by low-frequency noise with spectra proportional to 1/f. The ubiquity and negative impact of 1/f noise has motivated intensive research into its cause, and it is now believed to originate from a bath of fluctuating two-level defect states (TLSs) embedded in the material. This phenomenon is commonly described by the long-established standard tunnelling model (STM) of independent TLS. A key prediction of STM is that the noise should vanish at low temperatures. Here we report measurements on superconducting microresonators over previously unattainable, very long time scales that show an increase in 1/f noise at low temperatures and low microwave power, contrary to the STM. We propose a new generalised tunnelling model that includes significant interaction between multiple TLSs, which fully describes these observations, as well as recent studies of individual TLS lifetimes in superconducting qubits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncomms5119 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Department of Electronic Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
In this study, we investigate the origins of low-frequency noise (LFN) and 1/ noise in CuO thin-film transistors (TFTs). The static direct current (DC) - characterization demonstrates that the channel resistance () contributes significantly to mobility degradation in the TFTs, with channel thickness () controlled through the plasma-enhanced atomic layer deposition (PEALD) process. The 1/ noise followed the Hooge mobility fluctuation (HMF) model, and it was observed that both Coulomb and phonon scattering within the channel, which increased with a decrease in , contributed simultaneously.
View Article and Find Full Text PDFEcol Lett
January 2025
U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA.
Patterns of phytochemistry localisation in plant tissues are diverse within and across leaves. These spatial heterogeneities are important to the fitness of herbivores, but their effects on herbivore foraging and dietary experience remain elusive. We manipulated the spatial variance and clusteredness of a plant toxin in a synthetic diet landscape on which individual caterpillars fed.
View Article and Find Full Text PDFMicrosyst Nanoeng
December 2024
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA.
Nanoelectromechanical systems (NEMS) incorporating atomic or molecular layer van der Waals materials can support multimode resonances and exotic nonlinear dynamics. Here we investigate nonlinear coupling of closely spaced modes in a bilayer (2L) molybdenum disulfide (MoS) nanoelectromechanical resonator. We model the response from a drumhead resonator using equations of two resonant modes with a dispersive coupling term to describe the vibration induced frequency shifts that result from the induced change in tension.
View Article and Find Full Text PDFSmall
December 2024
Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
The development of high-performance Sn-based perovskite photodetectors is presented with double-sided passivation using large alkylammonium interlayers of PEAI and BDAI₂. This dual passivation strategy, applied to the top and bottom of FASnI₃ films, effectively improves film quality by reducing defect density, enhancing carrier mobility, and minimizing non-radiative energy losses at the interfaces. At 720 nm, the photodetectors demonstrate a responsivity of 0.
View Article and Find Full Text PDFNanoscale
December 2024
Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
Creating van der Waals (vdW) homojunction devices requires materials with narrow bandgaps and high carrier mobilities for bipolar transport, which are crucial for constructing fundamental building blocks like diodes and transistors in a 2D architecture. Following the recent discovery of elemental 2D tellurium, here, we systematically investigate the electrical transport and flicker noise of hydrothermally grown multilayer tellurium field effect transistors. While the devices exhibit a dominant p-type behavior with high hole mobilities up to ∼242 cm V s at room temperature and almost linear current-voltage characteristics down to 77 K, ambipolar behavior was observed in some cases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!