We previously observed that gut colonization by Candida albicans promoted serum antibody response to orally administered ovalbumin in mice. We therefore postulated that C. albicans affects oral tolerance induction. The present study tested this idea. BALB/c mice were intragastrically administered with either C. albicans (1 × 10(7)) or vehicle, and the colonization was confirmed by weekly fecal cultures. Mice were further divided into two subgroups and intragastrically administered with either ovalbumin (20 mg) or vehicle for five consecutive days. Thereafter, all mice were intraperitoneally immunized with ovalbumin in alum. In mice without C. albicans inoculation, ovalbumin feeding prior to immunization significantly suppressed the increase in ovalbumin-specific IgE, IgG1 and IgG2a in sera, suggesting oral tolerance induction. In C. albicans-inoculated mice, however, the antibody levels were the same between ovalbumin- and vehicle-fed mice. In contrast, ovalbumin feeding significantly suppressed cellular immune responses, as evidenced by reduced proliferation of splenocytes restimulated by ovalbumin ex vivo, in both C. albicans-inoculated and uninoculated mice. Ex vivo supplementation with neither heat-killed C. albicans nor the culture supernatant of C. albicans enhanced the production of ovalbumin-specific IgG1 in splenocytes restimulated by the antigen. These results suggest that gut colonization by C. albicans inhibits the induction of humoral immune tolerance to dietary antigen in mice, whereas C. albicans may not directly promote antibody production. We therefore propose that C. albicans gut colonization could be a risk factor for triggering food allergy in susceptible individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034285PMC
http://dx.doi.org/10.12938/bmfh.31.77DOI Listing

Publication Analysis

Top Keywords

gut colonization
16
albicans
10
mice
10
colonization candida
8
candida albicans
8
albicans inhibits
8
inhibits induction
8
induction humoral
8
humoral immune
8
immune tolerance
8

Similar Publications

Targeted inhibition of Gus-expressing to promote intestinal stem cell and epithelial renovation contributes to the relief of irinotecan chemotoxicity by dehydrodiisoeugenol.

Acta Pharm Sin B

December 2024

The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

Irinotecan (CPT11) chemotherapy-induced diarrhea affects a substantial cancer population due to -glucuronidase (Gus) converting 10--glucuronyl-7-ethyl-10-hydroxycamptothecin (SN38G) to toxic 7-ethyl-10-hydroxycamptothecin (SN38). Existing interventions primarily address inflammation and Gus enzyme inhibition, neglecting epithelial repair and Gus-expressing bacteria. Herein, we discovered that dehydrodiisoeugenol (DDIE), isolated from nutmeg, alleviates CPT11-induced intestinal mucositis alongside a synergistic antitumor effect with CPT11 by improving weight loss, colon shortening, epithelial barrier dysfunction, goblet cells and intestinal stem cells (ISCs) loss, and wound-healing.

View Article and Find Full Text PDF

Background: Patients admitted to the intensive care unit (ICU) often have gut colonization with pathogenic bacteria and such colonization is associated with increased risk for death and infection. We conducted a trial to determine whether a prebiotic would improve the gut microbiome to decrease gut pathogen colonization and decrease downstream risk for infection among newly admitted medical ICU patients with sepsis.

Methods: This was a randomized, double-blind, placebo-controlled trial of adults who were admitted to the medical ICU for sepsis and were receiving broad-spectrum antibiotics.

View Article and Find Full Text PDF

Identification of Antigens Recognized by Murine Intestinal IgAs by a Gel-Independent Immunoproteomic Approach.

J Proteome Res

January 2025

Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.

As part of the intestinal microbiota, can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown.

View Article and Find Full Text PDF

Background: Pouchitis is common among patients with ulcerative colitis (UC) who have had colectomy with ileal pouch-anal anastomosis. Antibiotics are first-line therapy for pouch inflammation, increasing the potential for gut colonization with multi-drug resistant organisms (MDRO). Fecal microbial transplant (FMT) is being studied in the treatment of pouchitis and in the eradication of MDRO.

View Article and Find Full Text PDF

Aims: The gastrointestinal (GI) tract is composed of distinct sub-regions, which exhibit segment-specific differences in microbial colonization and (patho)physiological characteristics. Gut microbes can be collectively considered as an active endocrine organ. Microbes produce metabolites, which can be taken up by the host and can actively communicate with the immune cells in the gut lamina propria with consequences for cardiovascular health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!