Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We use optical tweezers to investigate the threading force on a single dsDNA molecule inside silicon-nitride nanopores between 6 and 70 nm in diameter, as well as lipid-coated solid-state nanopores. We observe a strong increase of the threading force for decreasing nanopore size that can be attributed to a significant reduction in the electroosmotic flow (EOF), which opposes the electrophoresis. Additionally, we show that the EOF can also be reduced by coating the nanopore wall with an electrically neutral lipid bilayer, resulting in an 85% increase in threading force. All experimental findings can be described by a quantitative theoretical model that incorporates a hydrodynamic slip effect on the DNA surface with a slip length of 0.5 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl501909t | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!