Effect of step width manipulation on tibial stress during running.

J Biomech

Iowa State University, Department of Kinesiology, 249 Forker Building, Ames, IA 50011, USA. Electronic address:

Published: August 2014

Narrow step width has been linked to variables associated with tibial stress fracture. The purpose of this study was to evaluate the effect of step width on bone stresses using a standardized model of the tibia. 15 runners ran at their preferred 5k running velocity in three running conditions, preferred step width (PSW) and PSW±5% of leg length. 10 successful trials of force and 3-D motion data were collected. A combination of inverse dynamics, musculoskeletal modeling and beam theory was used to estimate stresses applied to the tibia using subject-specific anthropometrics and motion data. The tibia was modeled as a hollow ellipse. Multivariate analysis revealed that tibial stresses at the distal 1/3 of the tibia differed with step width manipulation (p=0.002). Compression on the posterior and medial aspect of the tibia was inversely related to step width such that as step width increased, compression on the surface of tibia decreased (linear trend p=0.036 and 0.003). Similarly, tension on the anterior surface of the tibia decreased as step width increased (linear trend p=0.029). Widening step width linearly reduced shear stress at all 4 sites (p<0.001 for all). The data from this study suggests that stresses experienced by the tibia during running were influenced by step width when using a standardized model of the tibia. Wider step widths were generally associated with reduced loading of the tibia and may benefit runners at risk of or experiencing stress injury at the tibia, especially if they present with a crossover running style.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2014.04.047DOI Listing

Publication Analysis

Top Keywords

step width
36
step
9
width manipulation
8
tibial stress
8
width
8
motion data
8
width increased
8
surface tibia
8
tibia decreased
8
linear trend
8

Similar Publications

Article Synopsis
  • Cobalt oxide (CoO) is an attractive electrode material for supercapacitors due to its affordability, natural abundance, non-toxicity, and high capacitance.
  • Researchers developed a binder-less molybdenum doped CoO (Mo@CoO) integrated electrode using a simple electric discharge corrosion (EDC) method, which allows for direct synthesis without templates or additives.
  • The study found that the Mo@CoO based supercapacitor with a specific discharge pulse width achieved a significantly higher capacitance and quick charge/discharge capabilities, showcasing the EDC method's potential for fabricating efficient electrodes for energy storage and sensing applications.
View Article and Find Full Text PDF

Ternary InGaP quantum dots (QDs) have emerged as promising materials for efficient blue emission, owing to their tunable bandgap, high stability, and superior optoelectronic properties. However, most reported methods for Ga incorporation into the InP structure have predominantly relied on cation exchange in pre-grown InP QDs at elevated temperatures above 280 °C. This is largely due to the fact that, when heating In and P precursors in the presence of Ga, an InP/GaP core-shell structure readily forms.

View Article and Find Full Text PDF

Impaired walking ability and leg health are commonly seen in broilers and can negatively impact their welfare. Commonly, walking ability and leg health are assessed manually, but this is time consuming and can be subjective. Automated approaches for scoring walking ability and leg health at the individual level could therefore have great added value.

View Article and Find Full Text PDF

An Atomistic Analysis of the Carpet Growth of KCl Across Step Edges on the Ag(111) Surface.

J Phys Chem Lett

January 2025

Clausius Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn 53115, Germany.

The carpet growth of alkali halide (AH) layers across step edges of substrates enables the growth of seamless and continuous large domains. Yet, information about how the AH layer adapts continuously to the height difference between the terraces on the two sides of a step is only described by continuum models, which do not give details of the ionic displacements. Here, we present a first study of thin epitaxial KCl(100) layers grown on the Ag(111) surface by scanning tunneling microscopy that provides atomistic details for the first time.

View Article and Find Full Text PDF

Aim: This study aimed to evaluate the impact of a combination of immediate implant placement with maxillary sinus augmentation (MSA) solely using platelet-rich fibrin (PRF) on guided bone regeneration.

Materials And Methods: An interventional before-after (pre-post) study design was used with 30 dental patients (≥18 years of age; 14 males and 16 females) with initial bone heights ranging between 4 and 6 mm. Following the general check-up and the creation of a study model, the planned implant location demonstrated an external right maxilla diameter of more than 5 mm, thereby validating the cone-beam computed tomography (CBCT) radiograph.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!