AI Article Synopsis

Article Abstract

The oncogenic fusion gene EWS-WT1 is the defining chromosomal translocation in desmoplastic small round-cell tumors (DSRCT), a rare but aggressive soft tissue sarcoma with a high rate of mortality. EWS-WT1 functions as an aberrant transcription factor that drives tumorigenesis, but the mechanistic basis for its pathogenic activity is not well understood. To address this question, we created a transgenic mouse strain that permits physiologic expression of EWS-WT1 under the native murine Ews promoter. EWS-WT1 expression led to a dramatic induction of many neuronal genes in embryonic fibroblasts and primary DSRCT, most notably the neural reprogramming factor ASCL1. Mechanistic analyses demonstrated that EWS-WT1 directly bound the proximal promoter of ASCL1, activating its transcription through multiple WT1-responsive elements. Conversely, EWS-WT1 silencing in DSRCT cells reduced ASCL1 expression and cell viability. Notably, exposure of DSRCT cells to neuronal induction media increased neural gene expression and induced neurite-like projections, both of which were abrogated by silencing EWS-WT1. Taken together, our findings reveal that EWS-WT1 can activate neural gene expression and direct partial neural differentiation via ASCL1, suggesting agents that promote neural differentiation might offer a novel therapeutic approach to treat DSRCT.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-13-3663DOI Listing

Publication Analysis

Top Keywords

neural differentiation
12
ews-wt1
9
reprogramming factor
8
factor ascl1
8
dsrct cells
8
neural gene
8
gene expression
8
neural
6
ascl1
5
dsrct
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!