The effect of dephasing on the thermoelectric efficiency of molecular junctions.

J Phys Condens Matter

Department of Physics and Electronics, University of Puerto Rico-Humacao, CUH Station, Humacao, Puerto Rico 00791, USA Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Ruco 00931, USA.

Published: July 2014

In this work we report the results of theoretical analysis of the effect of the thermal environment on the thermoelectric efficiency of molecular junctions. The environment is represented by two thermal phonon baths associated with the electrodes, which are kept at different temperatures. The analysis is carried out using the Buttiker model within the scattering matrix formalism to compute electron transmission through the system. This approach is further developed so that the dephasing parameters are expressed in terms of relevant energies, including the thermal energy, strengths of coupling between the molecular bridge and the electrodes and characteristic energies of electron-phonon interactions. It is shown that the latter significantly affect thermoelectric efficiency by destroying the coherency of electron transport through the considered system.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/26/27/275303DOI Listing

Publication Analysis

Top Keywords

thermoelectric efficiency
12
efficiency molecular
8
molecular junctions
8
dephasing thermoelectric
4
junctions work
4
work report
4
report theoretical
4
theoretical analysis
4
analysis thermal
4
thermal environment
4

Similar Publications

Concentrated Solar-Driven Catalytic CO2 Reduction: From Fundamental Research to Practical Applications.

ChemSusChem

January 2025

Southeast University, School of Chemistry and Chemical Engineering, Dong nan da xue Road No.2, Jiangning District, Nanjing, China., 211189, Nanjing, CHINA.

Concentrated solar-driven CO2 reduction is a breakthrough approach to combat climate crisis. Harnessing the in-situ coupling of high photon flux density and high thermal energy flow initiates multiple energy conversion pathways, such as photothermal, photoelectric, and thermoelectric processes, thereby enhancing the efficient activation of CO2. This review systematically presents the fundamental principles of concentrated solar systems, the design and classification of solar-concentrating devices, and industrial application case studies.

View Article and Find Full Text PDF

The next generation of soft electronics will expand to the third dimension. This will require the integration of mechanically compliant 3D functional structures with stretchable materials. Here, omnidirectional direct ink writing (DIW) of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) aerogels with tunable electrical and mechanical performance is demonstrated, which can be integrated with soft substrates.

View Article and Find Full Text PDF

"Popping the Ion-Basket": Enhancing Thermoelectric Performance of Conjugated Polymers by Blending with Latently Dissociable Perovskite Quantum Dots.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

A novel additive method to boost the Seebeck coefficient of doped conjugated polymers without a significant loss in electrical conductivity is demonstrated. Perovskite (CsPbBr) quantum dots (QDs) passivated by ligands with long alkyl chains are mixed with a conjugated polymer in a solution phase to form polymer-QD blend films. Solution sequential doping of the blend film with AuCl solution not only doped the conjugated polymer but also decomposed the QDs, resulting in a doped conjugated polymer film embedded with separated ions dissociated from the QDs.

View Article and Find Full Text PDF

High power output density organic thermoelectric devices for practical applications in waste heat harvesting.

Chem Soc Rev

January 2025

State Key Laboratory of Multiphase Flow in Power Engineering & School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China.

Organic thermoelectric (TE) materials are of great interest for researchers in waste heat recovery, especially for waste heat harvesting at near room temperature. Significant progress has been achieved in terms of their figure of merit () values recently, which has presented new insights into the development of organic TE materials. For numerous practical applications of thermoelectric generators, where waste heat is unlimited and cost negligible, the primary goal has been switched to achieve high power output density rather than improving their heat-to-electricity conversion efficiency.

View Article and Find Full Text PDF

Thermoelectrics can mutually convert between thermal and electrical energy, ensuring its utilization in both power generation and solid-state cooling. BiTe exhibits promising room-temperature performance, making it the sole commercially available thermoelectrics to date. Guided by the lattice plainification strategy, we introduce trace amounts of Cu into n-type Bi(Te, Se) (BTS) to occupy Bi vacancies, thereby simultaneously weakening defect scattering and modulating the electronic bands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!