Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the (1)S0-(3)P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082643 | PMC |
http://dx.doi.org/10.1038/ncomms5096 | DOI Listing |
Sci Rep
December 2024
Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
This study presents an innovative methane gas sensor design based on anti-resonant hollow-core fiber (AR-HCF) technology, optimized for high-precision detection at 3.3[Formula: see text]. Our numerical analysis explores the geometric optimization of the AR-HCF's structural parameters, incorporating real-world component specifications.
View Article and Find Full Text PDFIn large-area quantum networks based on optical fibers, photons are the fundamental carriers of information as so-called flying qubits. They may also serve as the interconnect between different components of a hybrid architecture, which might comprise atomic and solid-state platforms operating at visible or near-infrared wavelengths, as well as optical links in the telecom band. Quantum frequency conversion is the pathway to change the color of a single photon while preserving its quantum state.
View Article and Find Full Text PDFNanophotonics
March 2024
Department of Physics & Astronomy, University of California, Irvine, CA 92697, USA.
Hollow core optical fibers of numerous guiding mechanisms have been studied in the past decades for their advantages on guiding light in air core. This work demonstrates a new hollow core optical fiber based on a different guiding mechanism, which confines light with a cladding made of epsilon-near-zero (ENZ) material through total internal reflection. We show that the addition of a layer of ENZ material coating (e.
View Article and Find Full Text PDFNeurophotonics
October 2024
Technical University of Denmark, DTU Electro, Lyngby, Denmark.
Significance: Extending the photoacoustic microscopy (PAM) into the mid-infrared (MIR) molecular fingerprint region constitutes a promising route toward label-free imaging of biological molecular structures. Realizing this objective requires a high-energy nanosecond MIR laser source. However, existing MIR laser technologies are limited to either low pulse energy or free-space structure that is sensitive to environmental conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!