Highly stable Au(I)(core)-Ag(0)(shell) particles have been synthesized in aqueous solution via a green chemistry pathway utilising sunlight irradiation. The shell of the particles is composed of fluorescent Ag2 and Ag3 clusters which make the large core-shell particles highly fluorescent. The Au(I) core of the particles offers long-term stability to the silver clusters, which are otherwise unstable in solution at room temperature, by the transfer of electron density from the shell. Successive additions of Hg(II) ions to the fluorescent solution cause efficient and selective quenching of the fluorescence with gradual red shifting of the emission peak. The metallophilic 5d(10)(Hg(2+))-4d(10)(Ag(δ+)) interaction as well as Hg(II) stimulated aggregation have been ascribed to causing the fluorescence quenching and red shift. The fluorescent Au(I)(core)-Ag(0)(shell) particles are a highly selective and sensitive sensing platform for the detection of Hg(II) down to 6 nM in the presence of various metal ions. The detection limit is far below the permissible level as determined by the EPA. Interferences due to Cu(II) and Fe(III) have been eliminated using Na2-EDTA and NH4HF2, respectively. The fluorescent particles are successfully transferred to various solvent systems making Hg(II) determination also possible in non-aqueous media. Finally, the temperature dependent fluorescence change with and without Hg(II) provides information about the metallophilic interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4dt01158aDOI Listing

Publication Analysis

Top Keywords

auicore-ag0shell particles
8
particles highly
8
fluorescent
6
particles
6
hgii
5
fluorescent aui@ag₂/ag₃
4
aui@ag₂/ag₃ giant
4
giant cluster
4
cluster selective
4
selective sensing
4

Similar Publications

Microbial coalescence plays a crucial role in shaping aquatic ecosystems by facilitating the merging of neighboring microbial communities, thereby influencing ecosystem structure. Although this phenomenon is commonly observed in natural environments, comprehensive quantitative comparative studies on different lifestyle bacteria involved in this process are still lacking. The study focuses on 16S rRNA Amplicon Sequence Variants (ASVs) at the Jinsha River hydropower stations (Wudongde [WDD], Baihetan [BHT], Xiluodu [XLD], Xiangjiaba [XJB]), specifically examining free-living (FL) and particle-attached (PA) bacteria.

View Article and Find Full Text PDF

Rhamnolipid: nature-based solution for the removal of microplastics from the aquatic environment.

Integr Environ Assess Manag

January 2025

Engineering Faculty, Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye.

Over the past two decades, research into the accumulation of small plastic particles and fibers in organisms and environmental settings has yielded over 7,000 studies, highlighting the widespread presence of microplastics in ecosystems, wildlife, and human bodies. In recent years, these contaminants have posed a significant threat to human, animal, and environmental health, with most efforts concentrated on removing them from aquatic systems. Given this urgency, the purpose of this study was to investigate the potential of rhamnolipid, a biosurfactant, for the removal of microplastics from water.

View Article and Find Full Text PDF

Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored.

View Article and Find Full Text PDF

Unraveling the Meaning of Effective Uptake Coefficients in Multiphase and Aerosol Chemistry.

Acc Chem Res

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

ConspectusReactions of gas phase molecules with surfaces play key roles in atmospheric and environmental chemistry. Reactive uptake coefficients (γ), the fraction of gas-surface collisions that yield a reaction, are used to quantify the kinetics in these heterogeneous and multiphase systems. Unlike rate coefficients for homogeneous gas- or liquid-phase reactions, uptake coefficients are system- and observation-dependent quantities that depend upon a multitude of underlying elementary steps.

View Article and Find Full Text PDF

Pulmonary metastasis represents one of the most prevalent forms of metastasis in advanced melanoma, with mortality rates reaching 70%. Current treatments including chemotherapy, targeted therapy, and immunotherapy frequently exhibit limited efficacy or present high costs. To address these clinical needs, this study presents a biomimetic drug delivery system (Ce6-pTP-CsA) utilizing cryoshocked adipocytes (CsA) encapsulating the prodrug triptolide palmitate (pTP) and the photosensitizer Ce6, exploiting the characteristic of tumor cells to recruit and lipolyze adipocytes for energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!