A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineered platform for bioethylene production by a cyanobacterium expressing a chimeric complex of plant enzymes. | LitMetric

Ethylene is an industrially important compound, but more sustainable production methods are desirable. Since cellulosomes increase the ability of cellulolytic enzymes by physically linking the relevant enzymes via dockerin-cohesin interactions, in this study, we genetically engineered a chimeric cellulosome-like complex of two ethylene-generating enzymes from tomato using cohesin-dockerins from the bacteria Clostridium thermocellum and Acetivibrio cellulolyticus. This complex was transformed into Escherichia coli to analyze kinetic parameters and enzyme complex formation and into the cyanobacterium Synechococcus elongatus PCC 7942, which was then grown with and without 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) induction. Only at minimal protein expression levels (without IPTG), the chimeric complex produced 3.7 times more ethylene in vivo than did uncomplexed enzymes. Thus, cyanobacteria can be used to sustainably generate ethylene, and the synthetic enzyme complex greatly enhanced production efficiency. Artificial synthetic enzyme complexes hold great promise for improving the production efficiency of other industrial compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/sb400197fDOI Listing

Publication Analysis

Top Keywords

chimeric complex
8
enzyme complex
8
synthetic enzyme
8
production efficiency
8
complex
6
enzymes
5
engineered platform
4
platform bioethylene
4
production
4
bioethylene production
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!