Essential requirements for setting up a stem cell processing laboratory.

Bone Marrow Transplant

1] Stem Cell Transplant Programme, St George's Hospital and Medical School, London, UK [2] Blood Services Group, Health Sciences Authority, Outram Road, Singapore.

Published: August 2014

The Graft Processing subcommittee of the Worldwide Network for Blood and Marrow Transplantation wrote this guideline to assist physicians and laboratory technologists with the setting up of a cell processing laboratory (CPL) to support a hematopoietic stem cell transplant program, thereby facilitating the start-up of a transplant program in a new location and improving patient access to transplantation worldwide. This guideline describes the minimal essential features of designing such a laboratory and provides a list of equipment and supply needs and staffing recommendations. It describes the typical scope of services that a CPL is expected to perform, including product testing services, and discusses the basic principles behind the most frequent procedures. Quality management (QM) principles specific to a CPL are also discussed. References to additional guidance documents that are available worldwide to assist with QM and regulatory compliance are also provided.

Download full-text PDF

Source
http://dx.doi.org/10.1038/bmt.2014.104DOI Listing

Publication Analysis

Top Keywords

stem cell
8
cell processing
8
processing laboratory
8
transplant program
8
essential requirements
4
requirements setting
4
setting stem
4
laboratory
4
laboratory graft
4
graft processing
4

Similar Publications

Background: Anaplastic thyroid cancer (ATC) is a highly lethal disease, often diagnosed with advanced locoregional and distant metastases, resulting in a median survival of just 3-5 months. This study determines the stratified effectiveness of baseline treatments in all combinations, enabling precise prognoses prediction and establishing benchmarks for advanced therapeutic options.

Methods: The study extracted a cohort of pathologically confirmed ATC patients from the Surveillance, Epidemiology, and End Results program.

View Article and Find Full Text PDF

Chronic Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (HSCT), affecting the female genital tract in 25-66% of the patients. This condition, referred to as Genital GVHD is an underdiagnosed gynecologic comorbidity, that can significantly impair quality of life. We aimed to describe the prevalence and management of genital GVHD following HSCT.

View Article and Find Full Text PDF

Intra-patient variability in immunosuppressive blood drug concentrations is a potential biomarker in managing organ transplant patients. However, the association between the time in therapeutic range of tacrolimus blood concentrations and its efficacy in preventing graft-versus-host disease remains unknown. In this study, we analyzed the relationship between the time in therapeutic range of tacrolimus blood concentrations and its efficacy in acute graft-versus-host disease prophylaxis in patients undergoing allogeneic hematopoietic stem cell transplantation.

View Article and Find Full Text PDF

Stem cells prevent long-term deterioration of renal function after renal artery revascularization in a renovascular hypertension model in rats.

Sci Rep

January 2025

Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.

Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.

View Article and Find Full Text PDF

Plasma membrane-associated ARAF condensates fuel RAS-related cancer drug resistance.

Nat Chem Biol

January 2025

Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.

RAF protein kinases are major RAS effectors that function by phosphorylating MEK. Although all three RAF isoforms share a conserved RAS binding domain and bind to GTP-loaded RAS, only ARAF uniquely enhances RAS activity. Here we uncovered the molecular basis of ARAF in regulating RAS activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!