Formation of nanosized islands of dialkyl β-ketoester bonds for efficient hydrophobization of a cellulose film surface.

Langmuir

Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

Published: July 2014

The efficient hydrophobization mechanism of a hydrophilic cellulose film surface with alkylketene dimer (AKD) was studied in terms of formation of β-ketoester bonds at AKD/cellulose interfaces and their nanosized distribution analysis. AKD-treated cellulose and nanocellulose films were sequentially extracted with chloroform, hot water, and dioxane/water. Atomic force microscopy and high-resolution secondary-ion mass spectrometry were used to analyze the surface structures of the AKD-treated cellulose films and those after the sequential extraction. The results showed that the AKD molecules had melted and transformed into spherical nanoparticles, ∼37 nm in diameter, on the film surface during heat treatment, forming "sea/island"-like structures; the film surface projection area comprised 99% hydrophilic cellulose and 1% hydrophobic AKD nanoparticles. Determination of the AKD contents in the films revealed that an extremely small amount of AKD/cellulose β-ketoester bonds were likely to form at the AKD/cellulose interfaces during heating, clearly contributing to the hydrophobic nature of the sequentially extracted cellulose films.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la501706tDOI Listing

Publication Analysis

Top Keywords

film surface
16
β-ketoester bonds
12
efficient hydrophobization
8
cellulose film
8
hydrophilic cellulose
8
akd/cellulose interfaces
8
akd-treated cellulose
8
sequentially extracted
8
cellulose films
8
cellulose
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!