AI Article Synopsis

  • Hydrogen sulfide (H2S) is a signaling molecule with effects similar to nitric oxide (NO), but inconsistent data exists due to neglecting basic H2S chemistry.
  • The study emphasizes avoiding commercially available NaHS and removing metal ions to prevent changes in protein structure and erroneous experimental outcomes.
  • Significant concentrations of H2S can inhibit cell respiration and cause reactions with superoxide, affecting nitrite quantification, so careful methodology is essential for accurate results.

Article Abstract

Hydrogen sulfide (H2S) is an important signaling molecule with physiological endpoints similar to those of nitric oxide (NO). Growing interest in its physiological roles and pharmacological potential has led to large sets of contradictory data. The principle cause of these discrepancies can be the common neglect of some of the basic H2S chemistry. This study investigates how the experimental outcome when working with H2S depends on its source and dose and the methodology employed. We show that commercially available NaHS should be avoided and that traces of metal ions should be removed because these can reduce intramolecular disulfides and change protein structure. Furthermore, high H2S concentrations may lead to a complete inhibition of cell respiration, mitochondrial membrane potential depolarization and superoxide generation, which should be considered when discussing the biological effects observed upon treatment with high concentrations of H2S. In addition, we provide chemical evidence that H2S can directly react with superoxide. H2S is also capable of reducing cytochrome c(3+) with the concomitant formation of superoxide. H2S does not directly react with nitrite but with NO electrodes that detect H2S. In addition, H2S interferes with the Griess reaction and should therefore be removed from the solution by Cd(2+) or Zn(2+) precipitation prior to nitrite quantification. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) is reduced by H2S, and its use should be avoided in combination with H2S. All these constraints must be taken into account when working with H2S to ensure valid data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2014.06.003DOI Listing

Publication Analysis

Top Keywords

h2s
13
working h2s
8
h2s addition
8
h2s directly
8
directly react
8
superoxide h2s
8
working "h2s"
4
"h2s" facts
4
facts apparent
4
apparent artifacts
4

Similar Publications

Background: Erectile dysfunction is a condition with a rapidly increasing prevalence globally with a strong correlation to the increase in obesity and cardiovascular disease rates.

Aim: The aim of the current study is to investigate the potential role of tubacin, a histone deacetylase 6 (HDAC6) inhibitor, in restoring erectile function in a hypercholesterolemia-induced endothelial dysfunction model.

Methods: Thirty-nine male C57Bl/6 J mice were divided into 3 groups.

View Article and Find Full Text PDF

UW supplementation with AP39 improves liver viability following static cold storage.

Sci Rep

January 2025

Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Static cold storage of donor livers at 4 °C incompletely arrests metabolism, ultimately leading to decreases in ATP levels, oxidative stress, cell death, and organ failure. Hydrogen Sulfide (HS) is an endogenously produced gas, previously demonstrated to reduce oxidative stress, reduce ATP depletion, and protect from ischemia and reperfusion injury. HS is difficult to administer due to its rapid release curve, resulting in cellular death at high concentrations.

View Article and Find Full Text PDF

Background: Nitroxyl (HNO) is an emerging signaling molecule that plays a significant regulatory role in various aspects of plant biology, including stress responses and developmental processes. However, understanding the precise actions of HNO in plants has been challenging due to the absence of highly sensitive and real-time in situ monitoring tools. Consequently, it is crucial to develop effective and accurate detection methods for HNO.

View Article and Find Full Text PDF

Sodium hydrosulfide application induces chilling tolerance in banana fruits by enhancing antioxidant gene expression through the upregulation of the ethylene response factors MaERF53L/121L.

Food Chem

January 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Sodium hydrosulfide (NaHS), a hydrogen sulfide (H₂S) donor, effectively mitigates chilling injury (CI) in bananas; however, the underlying molecular mechanisms remain unclear. This study demonstrated that NaHS alleviates CI symptoms by activating antioxidant defense systems that reduce oxidative stress induced by CI. Transcriptomic analysis revealed 1003 differentially expressed genes in three sample groups, with enrichment in pathways related to cellular processes, metabolic activity, and secondary metabolite biosynthesis.

View Article and Find Full Text PDF

Halitosis presents a significant global health concern, necessitating the development of precise and efficient testing methodologies owing to the high prevalence and the associated social and psychological effects. The measurement of volatile sulfur compounds (VSCs), recognized as primary contributors to halitosis, is particularly significant. While gas chromatography (GC-MS) offers accurate measurements, its bulky and expensive nature limits widespread accessibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!