A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional association networks as priors for gene regulatory network inference. | LitMetric

Functional association networks as priors for gene regulatory network inference.

Bioinformatics

Stockholm Bioinformatics Centre, Science for Life Laboratory, SE-171 65 Solna, Sweden, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 05 Uppsala, Sweden and Swedish eScience Research Center, SE-100 44 Stockholm, SwedenStockholm Bioinformatics Centre, Science for Life Laboratory, SE-171 65 Solna, Sweden, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 05 Uppsala, Sweden and Swedish eScience Research Center, SE-100 44 Stockholm, SwedenStockholm Bioinformatics Centre, Science for Life Laboratory, SE-171 65 Solna, Sweden, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 05 Uppsala, Sweden and Swedish eScience Research Center, SE-100 44 Stockholm, Sweden.

Published: June 2014

Motivation: Gene regulatory network (GRN) inference reveals the influences genes have on one another in cellular regulatory systems. If the experimental data are inadequate for reliable inference of the network, informative priors have been shown to improve the accuracy of inferences.

Results: This study explores the potential of undirected, confidence-weighted networks, such as those in functional association databases, as a prior source for GRN inference. Such networks often erroneously indicate symmetric interaction between genes and may contain mostly correlation-based interaction information. Despite these drawbacks, our testing on synthetic datasets indicates that even noisy priors reflect some causal information that can improve GRN inference accuracy. Our analysis on yeast data indicates that using the functional association databases FunCoup and STRING as priors can give a small improvement in GRN inference accuracy with biological data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058914PMC
http://dx.doi.org/10.1093/bioinformatics/btu285DOI Listing

Publication Analysis

Top Keywords

grn inference
16
functional association
12
gene regulatory
8
regulatory network
8
association databases
8
inference accuracy
8
inference
6
association networks
4
priors
4
networks priors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!