The bisalkylating agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), used in cancer chemotherapy to hinder cellular proliferation, forms lethal interstrand cross-links (ICLs) in DNA. BCNU generates an ethylene linkage connecting the two DNA strands at the N1 atom of 2'-deoxyguanosine and N3 atom of 2'-deoxycytidine, which is a synthetically challenging probe to prepare. To this end, an ICL duplex linking the N1 atom of 2'-deoxyinosine to the N3 atom of thymidine via an ethylene linker was devised as a mimic. We have solved the structure of this ICL duplex by a combination of molecular dynamics and high-field NMR experiments. The ethylene linker is well-accommodated in the duplex with minimal global and local perturbations relative to the unmodified duplex. These results may account for the substantial stabilization of the ICL duplex observed by UV thermal denaturation experiments and provides structural insights of a probe that may be useful for DNA repair studies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.201402121DOI Listing

Publication Analysis

Top Keywords

icl duplex
12
ethylene linker
8
duplex
5
nmr structure
4
ethylene
4
structure ethylene
4
ethylene interstrand
4
interstrand cross-linked
4
dna
4
cross-linked dna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!