Currently, the most widely used photoresists in optical lithography are organic-based resists. The major limitations of such resists include the photon accumulation severely affects the quality of photolithography patterns and the size of the pattern is constrained by the diffraction limit. Phase-change lithography, which uses semiconductor-based resists such as chalcogenide Ge₂Sb₂Te₅ films, was developed to overcome these limitations. Here, instead of chalcogenide, we propose a metallic resist composed of Mg₅₈Cu₂₉Y₁₃ alloy films, which exhibits a considerable difference in etching rate between amorphous and crystalline states. Furthermore, the heat distribution in Mg₅₈Cu₂₉Y₁₃ thin film is better and can be more easily controlled than that in Ge₂Sb₂Te₅ during exposure. We succeeded in fabricating both continuous and discrete patterns on Mg₅₈Cu₂₉Y₁₃ thin films via laser irradiation and wet etching. Our results demonstrate that a metallic resist of Mg₅₈Cu₂₉Y₁₃ is suitable for phase change lithography, and this type of resist has potential due to its outstanding characteristics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058869 | PMC |
http://dx.doi.org/10.1038/srep05300 | DOI Listing |
Neuropsychopharmacol Rep
March 2025
Department of Neuropsychiatry, School of Medicine, Wakayama Medical University, Wakayama, Wakayama, Japan.
Introduction: Clozapine is an atypical antipsychotic drug approved for treatment-resistant schizophrenia (TRS). Despite its high efficacy for TRS, clozapine is associated with several serious adverse effects, such as neutropenia and diabetes, so it requires vigilant monitoring. Severe anemia has also been documented as a rare but serious complication with an unclear mechanism.
View Article and Find Full Text PDFMater Today Bio
February 2025
Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany.
In recent years, metal-organic frameworks (MOFs) have emerged as promising materials for biomedical applications, owing to their superior chemical versatility, unique textural properties and enhanced mechanical properties. However, their fast and uncontrolled degradation, together with the reduced bioactivity have restricted their clinical potential. To overcome these limitations, MOFs can be synergistically combined with other materials, such as bioactive glasses (BGs), known for their bioactivity and therapeutic ion releasing capabilities.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Clinical microbiology and immunology department, National liver institute, Menoufia University, Shibin el Kom, Egypt.
Background: Recent advances in nanomedicine have derived novel prospects for development of various bioactive nanoparticles and nanocomposites with significant antibacterial and antifungal properties. This study aims to investigate some characteristics of the novel Se-NPs/CuO nanocomposite such as morphological, physicochemical, and optical properties, as well as to assess the antibacterial activity of this fabricated composite in different concentrations against some MDR Gram-positive and Gram-negative clinical bacterial isolates.
Methods: The Se-NPs/CuO nanocomposite was fabricated using the chemical deposition method.
BMC Genomics
January 2025
Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, University of Carthage, National Institute of Applied Sciences and Technology, Tunis, 2080, Tunisia.
Background: The stone-dwelling genus Blastococcus plays a key role in ecosystems facing extreme conditions such as drought, salinity, alkalinity, and heavy metal contamination. Despite its ecological significance, little is known about the genomic factors underpinning its adaptability and resilience in such harsh environments. This study investigates the genomic basis of Blastococcus's adaptability within its specific microniches, offering insights into its potential for biotechnological applications.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia.
This study investigates the prevalence of hypomagnesemia in adults with type 2 diabetes mellitus (T2DM) in Riyadh, Saudi Arabia, and examines its association with various metabolic parameters. Conducted as a cross-sectional study at King Saud University, Riyadh, it included 294 Saudi adults aged 25 to 65 years, comprising 119 T2DM patients, 80 prediabetics, and 95 nondiabetic controls. Participants underwent physical examinations, and fasting blood samples were analyzed for glucose, glycated hemoglobin (HbA1c), lipid profile, and serum magnesium levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!