Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN) and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein has antiviral activity and mediates RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone-marrow-derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL, Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101812PMC
http://dx.doi.org/10.1016/j.immuni.2014.05.007DOI Listing

Publication Analysis

Top Keywords

human oasl
16
antiviral activity
8
oasl
8
oasl protein
8
rig-i activation
8
oasl expression
8
rig-i signaling
8
rig-i
7
human
6
activity human
4

Similar Publications

African swine fever (ASF), a highly virulent viral infection, poses a significant threat to the global pig industry. Currently, there are no commercially available vaccines against ASF. While the crucial role of interferon (IFN) in combating viral infections is well-established, its impact on the clinical signs and mortality rates of ASF remains unclear.

View Article and Find Full Text PDF

Background: Breast cancer is the most common malignancy among women worldwide, characterized by complex molecular and cellular heterogeneity. Despite advances in diagnosis and treatment, there is an urgent need to identify reliable biomarkers and therapeutic targets to improve early detection and personalized therapy. The OAS (2'-5'-oligoadenylate synthetase) family genes, known for their roles in antiviral immunity, have emerged as potential regulators in cancer biology.

View Article and Find Full Text PDF

In this study, we used a three-dimensional airway "organ tissue equivalent" (OTE) model at an air-liquid interface (ALI) to mimic human airways. We investigated the effects of three viruses (Influenza A virus (IAV), Human metapneumovirus (MPV), and Parainfluenza virus type 3 (PIV3) on this model, incorporating various control conditions for data integrity. Our primary objective was to assess gene expression using the NanoString platform in OTE models infected with these viruses at 24- and 72-hour intervals, focusing on 773 specific genes.

View Article and Find Full Text PDF

Background/aim: Glioma, the most common type of primary brain tumor, is characterized by high malignancy, recurrence, and mortality. Long non-coding RNA (lncRNA) H19 is a potential biomarker for glioma diagnosis and treatment due to its overexpression in human glioma tissues and its involvement in cell division and metastasis regulation. This study aimed to identify potential therapeutic targets involved in glioma development by analyzing gene expression profiles regulated by H19.

View Article and Find Full Text PDF

Elucidating the role of PPARG inhibition in enhancing MERS virus immune response: A network pharmacology and computational drug discovery.

J Infect Public Health

November 2024

Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia. Electronic address:

Background: Middle East Respiratory Syndrome (MERS) has become a severe zoonotic disease, posing significant public health concerns due to the lack of specific medications. This urgently demands the development of novel therapeutic molecules. Understanding MERS's genetic underpinnings and potential therapeutic targets is crucial for developing effective treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!