Controlling the kinetics and gelation of photopolymerization is a significant challenge in the fabrication of complex three-dimensional (3D) objects as is critical in numerous imaging, lithography, and additive manufacturing techniques. We propose a novel, visible light sensitive "photoinitibitor" which simultaneously generates two distinct radicals, each with their own unique purpose-one radical each for initiation and inhibition. The Janus-faced functions of this photoinitibitor delay gelation and dramatically amplify the gelation time difference between the constructive and destructive interference regions of the exposed holographic pattern. This approach enhances the photopolymerization induced phase separation of liquid crystal/acrylate resins and the formation of fine holographic polymer dispersed liquid crystal (HPDLC) gratings. Moreover, we construct colored 3D holographic images that are visually recognizable to the naked eye under white light.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja502366rDOI Listing

Publication Analysis

Top Keywords

visible light
8
initiation inhibition
8
monochromatic visible
4
light "photoinitibitor"
4
"photoinitibitor" janus-faced
4
janus-faced initiation
4
inhibition storage
4
storage colored
4
colored images
4
images controlling
4

Similar Publications

Gluing is a critical step in aircraft sealing assembly, with glue profile inspection serving as the final quality assurance measure to ensure consistency and accuracy of the sealant coating, allowing timely detection and correction of defects to maintain assembly integrity and safety. Currently, existing glue inspection systems are limited to basic inspection capabilities, lack result digitization, and exhibit low efficiency. This paper proposes a 3D inspection technology for sealant coating quality based on line-structured light, enabling automated and high-precision inspection of sealant thickness, sealant width, positional accuracy, and overlap joint sealant contour through geometric computation.

View Article and Find Full Text PDF

Blue Light Damages Retinal Ganglion Cells Via Endoplasmic Reticulum Stress and Autophagy in Chickens.

Invest Ophthalmol Vis Sci

January 2025

Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China.

Purpose: Because chickens have excellent light perception properties, this study focused on investigating whether monochromatic light can cause photodamage in chicken retinal ganglion cells (RGCs).

Methods: Post-hatching day chickens were exposed to four different light-emitting diode light environments for five weeks, respectively, monochromatic blue light (480 nm), green light (560 nm), red light (660 nm), or white light (6000 K). The mechanisms through which monochromatic light influences the structure of the chicken retina were analyzed by detecting the morphological structure of the retina, gene and protein expression levels, and the ultrastructure of the optic nerve.

View Article and Find Full Text PDF

Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.

Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.

View Article and Find Full Text PDF

StarTrack: Mapping Cellular Fates with Inheritable Color Codes.

Methods Mol Biol

January 2025

Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.

StarTrack is a powerful multicolor genetic tool designed to unravel cellular lineages arising from neural progenitor cells (NPCs). This innovative technique, based on retrospective clonal analysis and built upon the PiggyBac system, creates a unique and inheritable "color code" within NPCs. Through the stochastic integration of 12 distinct plasmids encoding six fluorescent proteins, StarTrack enables precise and comprehensive tracking of cellular fates and progenitor potentials.

View Article and Find Full Text PDF

Lineage tracing based on modern live imaging approaches enables to visualize, reconstruct, and analyze the developmental history, fate, and dynamic behaviors of cells in vivo in a direct, comprehensive, and quantitative manner. Light-sheet fluorescence microscopy (LSFM) has greatly boosted lineage tracing efforts, because fluorescently labeled specimens can be imaged in their entirety, over long periods of time, with high spatiotemporal resolution and minimal photodamage. In addition, an increasing arsenal of commercial and open-source software solutions for cell and nuclei segmentation and tracking can be employed to convert data from pixel-based to object-based representations, and to reconstruct the lineages of cells in their native context as they organize in tissues, organs, and whole organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!