The spread of carbapenemase producers in Enterobacteriaceae has now been identified worldwide. Three main carbapenemases have been reported; they belong to three classes of β-lactamases, which are KPC, NDM, and OXA-48. The main reservoirs of KPC are Klebsiella pneumoniae in the USA, Israel, Greece, and Italy, those of NDM are K. pneumoniae and Escherichia coli in the Indian subcontinent, and those of OXA-48 are K. pneumoniae and Escherichia coli in North Africa and Turkey. KPC producers have been mostly identified among nosocomial isolates, whereas NDM and OXA-48 producers are both nosocomial and community-acquired pathogens. Control of their spread is still possible in hospital settings, and relies on the use of rapid diagnostic techniques and the strict implemention of hygiene measures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1469-0691.12719 | DOI Listing |
J Glob Antimicrob Resist
January 2025
Infectious Disease Clinic, Dept. Of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy; Infectious Disease, Azienda Sanitaria Pesaro-Urbino, Pesaro, Italy.
Objectives: KPC-producing Klebsiella pneumoniae (KPC-Kp) is a great cause of concern and it is often associated with bloodstream infections (BSIs) and a high mortality rate. We identified the risk factors of KPC-Kp BSIs observed in three Italian hospitals and studied the epidemiology of KPC-Kp strains.
Methods: We performed a retrospective analysis of KPC-Kp BSIs from 2014 to 2019 in three hospitals in Central Italy (Ancona, Pesaro-Fano, and Perugia).
Microorganisms
January 2025
Laboratório de Epidemiologia e Microbiologia Moleculares-LEMiMo, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13563-120, SP, Brazil.
KPC is a clinically significant serine carbapenemase in most countries, and its rapid spread threatens global public health. transmission is commonly mediated by Tn transposons. The gene has also been found in (NTE).
View Article and Find Full Text PDFBiomedicines
December 2024
Infectious Disease Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Hippokration General Hospital, 54642 Thessaloniki, Greece.
Antimicrobial resistance (AMR) is recognized as one of the most important global public health threats. There is an urgent need to reduce the spread of these multidrug-resistant bacteria (MDR-B), particularly in extremely vulnerable patients. The aim of this study was to investigate whether targeted gene amplification performed directly on clinical samples can be used simultaneously with a bundle of enhanced infection control measures in a Pediatric Intensive Care Unit (PICU) endemic to MDR-B.
View Article and Find Full Text PDFMicrob Drug Resist
January 2025
Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Türkiye.
Colistin- and carbapenem-resistant (ColR CrKp) cause important health problems in pediatric intensive care units (PICUs) due to its ability to harbor multiple resistance genes and spread of high-risk clones. In this study, molecular epidemiological characteristics, transferable resistance genes, and alterations of ColR CrKp isolated from PICU were investigated. Isolates were identified by MALDI-TOF MS, and antimicrobial susceptibility tests were performed using disk diffusion method, gradient strip test, and broth microdilution method.
View Article and Find Full Text PDFTrop Med Infect Dis
December 2024
Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia.
Mass gatherings are associated with the spread of communicable diseases. Some studies have suggested that acquisition of antimicrobial resistance (AMR) may be associated with attendance at specific mass gatherings. This systematic review aimed to synthesise evidence on the association between attendance at mass gatherings and antimicrobial resistance (AMR) and assess the prevalence of AMR at mass gatherings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!