Background And Purpose: The OX40-OX40L protein-protein interaction (PPI) is an important cell-surface signalling co-stimulatory regulator within the TNFR superfamily (TNFRSF) and a promising therapeutic target for immunomodulation. PPIs are difficult to modulate using small-molecules. Here, we describe the identification of a small-molecule OX40 modulator and confirm its partial agonist character.
Experimental Approach: Cell-free screening assays were developed and used to identify OX40-OX40L inhibitors. Modified versions of this assay were used to elucidate the binding partner and the binding nature of active compounds. OX40-transfected sensor cells with NF-κB reporters were constructed and used to confirm and characterize activity and specificity. Immunomodulatory activity and partial agonist nature were further confirmed by ex vivo T-cell polarization assays.
Key Results: Several compounds that concentration-dependently affected OX40-OX40L were identified. Cell assays indicated that they were partial agonists with low micromolar potency and adequate selectivity. Under polarizing conditions based on TGF-β, the most promising compound mimicked the effect of an agonistic anti-OX40 antibody in suppressing regulatory T-cell generation and diverting CD4(+) CD62L(+) Foxp3(-) cells to TH 9 phenotype in vitro.
Conclusions And Implications: We identified, to our knowledge, the first small-molecule compounds able to interfere with OX40-OX40L binding and, more importantly, to act as partial agonists of OX40. This is particularly interesting, as small-molecule agonism or activation of PPIs is considered unusually challenging and there are only few known examples. These results provide proof-of-principle evidence for the feasibility of small-molecule modulation of the OX40-OX40L interaction and for the existence of partial agonists for TNFRSF-PPIs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294117 | PMC |
http://dx.doi.org/10.1111/bph.12819 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!