During endosymbiotic interactions between legume plants and nitrogen-fixing rhizobia, successful root infection by bacteria and nodule organogenesis requires the perception and transduction of bacterial lipo-chitooligosaccharidic signal called Nod factor (NF). NF perception in legume roots leads to the activation of an early signaling pathway and of a set of symbiotic genes which is controlled by specific early transcription factors (TFs) including CYCLOPS/IPD3, NSP1, NSP2, ERN1 and NIN. In this study, we bring convincing evidence that the Medicago truncatula CCAAT-box-binding NF-YA1 TF, previously associated with later stages of rhizobial infection and nodule meristem formation is, together with its closest homolog NF-YA2, also an essential positive regulator of the NF-signaling pathway. Here we show that NF-YA1 and NF-YA2 are both expressed in epidermal cells responding to NFs and their knock-down by reverse genetic approaches severely affects the NF-induced expression of symbiotic genes and rhizobial infection. Further over-expression, transactivation and ChIP-PCR approaches indicate that NF-YA1 and NF-YA2 function, at least in part, via the direct activation of ERN1. We thus propose a model in which NF-YA1 and NF-YA2 appear as early symbiotic regulators acting downstream of DMI3 and NIN and possibly within the same regulatory complexes as NSP1/2 to directly activate the expression of ERN1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.12587 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!