Two CCAAT-box-binding transcription factors redundantly regulate early steps of the legume-rhizobia endosymbiosis.

Plant J

Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, UMR441, F-31326, Castanet-Tolosan, France; Laboratoire des Interactions Plantes-Microorganismes (LIPM), CNRS, UMR2594, F-31326, Castanet-Tolosan, France.

Published: September 2014

During endosymbiotic interactions between legume plants and nitrogen-fixing rhizobia, successful root infection by bacteria and nodule organogenesis requires the perception and transduction of bacterial lipo-chitooligosaccharidic signal called Nod factor (NF). NF perception in legume roots leads to the activation of an early signaling pathway and of a set of symbiotic genes which is controlled by specific early transcription factors (TFs) including CYCLOPS/IPD3, NSP1, NSP2, ERN1 and NIN. In this study, we bring convincing evidence that the Medicago truncatula CCAAT-box-binding NF-YA1 TF, previously associated with later stages of rhizobial infection and nodule meristem formation is, together with its closest homolog NF-YA2, also an essential positive regulator of the NF-signaling pathway. Here we show that NF-YA1 and NF-YA2 are both expressed in epidermal cells responding to NFs and their knock-down by reverse genetic approaches severely affects the NF-induced expression of symbiotic genes and rhizobial infection. Further over-expression, transactivation and ChIP-PCR approaches indicate that NF-YA1 and NF-YA2 function, at least in part, via the direct activation of ERN1. We thus propose a model in which NF-YA1 and NF-YA2 appear as early symbiotic regulators acting downstream of DMI3 and NIN and possibly within the same regulatory complexes as NSP1/2 to directly activate the expression of ERN1.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.12587DOI Listing

Publication Analysis

Top Keywords

nf-ya1 nf-ya2
12
transcription factors
8
symbiotic genes
8
rhizobial infection
8
ccaat-box-binding transcription
4
factors redundantly
4
redundantly regulate
4
early
4
regulate early
4
early steps
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!